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1 Introduction

These are the notes I took during the 2024 YTM in Münster, I want to express my deepest gratitude to
all the organizers, speakers and in general all attendees for a very instructive, enriching and interesting
week.

These notes surely contain many mistakes, omissions and spelling mistakes, the reader is invited
to assume that all of these are my own, and not mistakes of the speakers. Regarding spelling, I in
particular want to specify that misspelled or uncapitalized names are not meant to be taken as a sign
of disrespect, but rather as an indication of difference between the speaker’s talking speed and my
writing speed.

I did my best to specify lines where I most definitely missed something using bold text. My
final apology is for a mix of languages, though 99% of what I wrote is English, so I am ending this
introduction on a rather small apology.
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2 Ishan Levy’s mini course on Telescopic computations in Algebraic
K-theory

2.1 Talk 1

Things related to the disproof of the telescope conjecture. Computational point of view.

Some references:

1. On topological cyclic homology Nikolas and Scholze.

2. K-theoretic counter examples to the Ravenel’s telescope conjecture.

The Telescope conjecture belongs to stable homotopy theory, which studies e.g πs
i (S). We know some

basic computationsπk(S) =

1. 0 for k < 0

2. Z for k = 0

3. A finite abelian group for k > 0

We often localize at a prime p for further studies, we work in the category of spectra Sp.

There is a notion of spectrum of spectra Spec∆(Sp) where p is some prime p (perfectly analogous,
but different to Spec(Z(p))).

Definition 1. A ring spectrum R is a field if π∗(R) is a gradded field.

We say that R and R′ have the same characteristic if R ⊗ R′ ̸= 0 (by tensor product we mean
smash product).

One question is what characteristics of fields can we find. And it turns out: We can realize them
all in Sp(p) by using the Morava K-theories K(n). These are in general quite hard to understand, but
we have a relatively nice description 0, 1, ∞ and of π∗(K(n)) using Witt vectors I think. Each of
these K(n) corresponds to the ”residue field” at an element pn ∈ Spec∆(S(p)).

One trick for constructing elements of the stable homotopy groups is using a map from a finite
spectra v : V → S, then use the following diagram

ΣnS→ ΣmV → V → S

(where n and m aren’t arbitrary but apparently not important right now, the first map I think
comes from initiality of S and the second I believe is some natural ”collapse” map?) From this we will
take a lot of powers and if we are careful we might get a ton of elements of the stable homotopy groups.

So question: What (V, v) do we want to consider. First of all v shouldn’t be nilpotent and second
of all we should consider central v (whatever that means).

We can construct an example by taking the cofiber of S p−→ S, which is S/p. This map has a self
map of degree 2p − 1 (i.e a map Σ2p−1S/p → S/p) call this map v1, take the cofiber, we get a space
S/p, v1. We then do this repeatedly and get maps vn, a map of degree 2pn−1 from the cofiber of vn−1
to itself.

There is a theorem of Hopkins and Smith which explains the point of these vn, in particular we
use these to construct a spectra T (n) which is the telescope Unclear whether my terminology
is correct. Now we have two nice families of spectra T (n), K(n) the telescopes and the spectra of
Morava K-theories. The former is great cause LT (n)Sp contains info about stable homotopy groups
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up to vn-periodicity. And K(n) is great because stuff in LK(n)Sp is very computable using ideas/tools
from arithmetic geometry. That these two bousfield localizations actually yield the same category
(this Ravenel’s telescope conjecture). The raison d’être of the conjecture (I think) is that in the case
n = 1 this is true, but for n ≥ 2 this is false.
The difference is proven to exist by using ”trace methods with cyclic homology” ... whatever that
means. What they show is that LT (n)K(BP < n − 1 >hZ) is not K(n) local (which shows that the
two categories are different, as this is obviously T (n) local).
By initiality there is a natural map LT (n)S→ LT (n)K(BP < n−1 >hZ) which we can use... to do stuff?

There is a theorem by a bunch of people which says

Σn
1 rkp(πi(S))

n
≥ O(log(n))

Now the thing which helps, is that in the case of BP < n − 1 >hZ the algebraic K-theory K(−) (so
this spectrum is a ring spectra) is the same as topological cyclic homology TC(−).

What we need to show is that some map involving the spectra T (n) ⊗ TC(BP < n − 1 >hZ) or
spaces that look like it, which are weak equivalences but not K(n)-locally.

Now let’s start discussing these functors K, TC : RingSpectrum → Sp. There is a natural trans-
formation comparing them K → TC called cyclotomic trace.

There is a neat theorem which says that LT (n)K(R) depends only on LT (n)⊗T (n−1)R. This is nice
because usually K(R) is really annyoing to compute, but maybe not in this case?

There is a theorem (Dundas G... Mcarthy) which says that the natural maps TC(R)← K(R)→
K(π∗(R)) and TC(R) → TC(π∗(R)) ← K(π∗(R)) assemble into a pullback square. The speaker
uograded this theorem to the case where the ring has a Z action. In which case this also a pullback
square after taking homotopy fixed points. But we may lose some connectivity.

So TC is a ring spectrum invariant, which is constructed from THH which is another ring spectrum
(rings are assumed to be E1). View R as an R bimodule, which is the same as an R ⊗ Rop module.
Then we define

THH(R) = R⊗R⊗Rop R

We can also replace the second R by an R bimodule M to get a THH with coefficients M .
In the commutative case we also have (in the category of commutative ring spectra)

THH(R) = lim−→
S1

R

This can be generalized to general symmetric monoidal categories, so we get a functor THHC :
Alg(C)→ C for C symmetric monoidal.

For some reason, THHC has an S1 action (I don’t know for what C, any symmetric monoidal
category???)
In spectra THH(R) has extra structure, in particular a map, called the Frrobenius maps ϕp :
THH(R) → THH(R)tCp , one for each prime p, this map is S1-equivariant and the superscript tCp

means the ”tate construction”.

Spectra with an S1 action and a collection of maps for each prime X → XtCp which are S1

equivariant assemble into a category, the category of cyclotomic spectra (unclear whether my definition
is correct). So THH is a functor RingSp→ CycSp. We use this category to define topological cyclic
homology:

TC(X) = MorCycSp(THH(S, X))
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And so for a ring R we denote by TC(R) the spectrum TC(THH(R)).

For example, there is a fundamental calculation by Béckstedt who computed TC(Fp). First we
need to understand THH(Fp) = Fp ⊗Fp⊗Fop

p
Fp. We can (relatively easily) understand the homotopy

of THH(Fp) to be the Dual Steenrod algebra mod p, which for p = 2 is known to be a polynomial
algebra Fp[τi] with each τi a generator in degree 2pi − 1. In general though it is given by Fp[σ2p].
From this we can deduce that as Fp − E2 algebras THH(Fp) ∼= FreeE2−Fp(σ2p).

2.2 Talk 2

The algberaic K-theory of KU .
Reference:

1. LL topological Horschild homology of the image of J .

2. HW redshift and multiplication for truncated brown peterson spectra.

3. HRW a motivic filtration on the topological cyclic homotopy of comm ring. spectra.

Well actually we won’t study algerbraic K-theory, but TC, and we also lied about studying KU,
but instead we will study a connective cover of a summand, called the adam’s summand, called
l = BP < 1 >. It’s homotopy ring is Z(p)[v1] (this is related in some sense to homotopy ring of KU ,
but didn’t quite catch how).

Recall TC is built from THH, so a good first computation is THH(l), and we can mod out (by
taking an appropriate cofiber) by some of the stuff we already know, i.e the prime p and the element
v1 of the homotopy ring. It turns out this will be the same as THH(l, l/(v1, p)) which is the same as
THH(l,Fp). Now l has an Adams filtration, which gives a grading on l, and we can take the associated
graded ring gr(l) ∼= Fp[v0, v1], where all these elements have some grading.

Whenever we have a filtered spectrum, we have a spectral sequence, the E1 page is the associated
graded smth?, so the E1 page is THH(Fp[v0, v1],Fp) and it converges to THH(l,Fp). One property
of THH is that it is a symmetric monoidal functor, i.e preserves tensor products of algebras. We can
use this by noticing Fp ⊗ S[v0, v1]/v0v1. Now THH(Fp) = Fp[σ2p] is a ”well known” computation,
and so all we need to do is understand THH(S[v0, v1]/v0v1), and for some reason which presumably
is clear if you know more abt THH and stuff, is that this is the same as HHFp(Fp[v0, v1]) and this is
a classical invariant (i.e invariant of rings, no need for spectra or any higher stuff). This is relatively
computable, see:

Theorem 1. (HKR) We have
π∗(HH(k[x])) = k[x] < dx > .

So applying this theorem to our case yields Fp[σ2p] < dv0, dvp > (recall we are doing this to un-
derstand a certain spectral sequence).

There is some magical trickery which allows one to define a map ΣX → σe ⊗X → THH(X) in
any symmetric monoidal category. Doing this for E∞ rings, yields a map ΣR→ S1 ⊗R→ THH(R).
Let’s call this map d, it turns out this map is natural, let’s study it for the initial E∞ ring, which is
the sphere spectrum. In that case d will have to be 0, by initality and naturality, this means that
other d, factor through the cofiber of the suspension of the initial map S → R. We call the map out
of the cofiber to be σ2. And then a lot of stuff was said whose point wholly elluded me.
A bunch of stuff are modules over other stuff, create a nice diagram relating all the stuff and then
get some relations between different algebras and then for some reason we are happier than we were
before.
For example we have a fundamental computation in the homotopy ring of THH(Fp) which is (σ2p)pi =
σ2vi, and this apparently has many consequences when computing TC. Maybe the raison d’être of all
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this stuff is to understand the Tor spectral sequence of THH(Fp) = Fp ⊗S Fp, which is what is used
to compute the topological Horschild homology of Fp.

All of the above reasoning (which I didn’t really write out) is sufficiently general to be done in fil-
tered spectra, thus giving some spectral sequence information, which is nice cause that is what we are
computing. I guess the moral is that ”geometric intution” can be transfered Top→ Sp→ FilteredSp
and in the latter category this has powerful computational ramifications, which in turn is cool because
computations have implications. In our case the whole stuff I didn’t understand was to compute a
THH, this being done, we can try to understand TC, which requires understanding which is S1 equiv-
ariant.

One cool thing which you do, for some reason, is to take the one point compactification of the
standard representation of S1, which is S1 → U1. The point of this is beyond me, but it is plenty
cool. I think it is because in an S1 equivariant setting, this is more natural than S1 for purposes such
as smashing. Maybe not quite more natural, but containing ever so slightly more information.

There is a Bockstedt spectral sequence which has implications for homotopy fixed point. Which
is nice because topological cyclic homology has a lot to do with homotopy fixed points and THH
has a circle action. The connection is given bc TC is the equalizer of maps out of THH(−)hS1

into THH(−)tS1 . One map is the cannonical one, and the other one is the Frobenius map And to
understand this you take, among other things, homotopy fixed point spectral sequences.

2.3 Talk 3

The height 2 telescope conjecture.

Recall: where were we last time: how to compute the homotopy groups of THH of the adams sum-
mand BP < 1 > quotiented out by some stuff we understand, and this is with the goal of understanding
the topological cyclic homology of the same space, quietened out by the same ”trivial” stuff. Taking
homotopy fixed points before taking TC yields a telescope spectrum TC(lhZ)/(p, v1)[v−1

2 ] which is the
contradiction to the height 2 telescope conjecture due to a comparaison map with TC(l)hZ/(p, v1)[v−1

2 ]
which is K(2)-local, so if the comparison map is not an equivalence, we are good.

The computation of that map is similar to the computation THH(l)/(p, v1)→ TC(l)/(p, v1)[v−1
2 ],

and this has been done in the 2000s by Ausoni and Rognes, thus in priniciple could have been done
all those years ago. But a more recent method by smbdy turned out to be used by Ishan Levi and
co.

Now to compute TC given THH, there is an equalizer diagram relating them, by taking an equal-
izer of the cyclotomic frobenius map and the cannonical map from the S1-homotopy fixed point to
the S1 tate construction. One tool for this computation:

Theorem 2. (THH Segal conjecture) There is a map THH(l)/(p, v1)→ THH(l)/(p, v1)tCp which is
equivalent to a map THH(l)(p, v1)[σ2v−1

2 ]. Which implies that the Frobenius map is an isomorphism
in large degrees.

So we want to understand THH(l)tCp/(p, v1), we can make this easier by quotienting by v2 as
well. We know its homotopy groups because I think we already did it. And so we can understand
the E2 page of the Tate spectral sequence, because we know to what it converges. To this we only
need to understand the class σ2 equivariantly and the THH Segal conjecture. With some trickery this
reduces to understanding a certain d2 differential. We can only understood things up to units, which
normally isn’t important, but it is important in some specific construction.
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We first discuss stuff Cp equivariantly, but the goal is S1-equivariantly. But it turns out in this
case Cp-equivariance determines S1 equivariance, as we have maps XtS1 → XtCp . And so by a com-
mutative diagram it suffices to understand the map I just mentioned to understand a Frobenius map.

Then he uses something called ”cannonical vanishing”, which I think says something about a frobe-
nius map. And then some reasoning about connectivity of the involved spaces. Following this a bunch
of reasoning is done which I do not understand and so decided not to copy. I will just list some things
he mentions.

There is a v2 Bockstein spectral sequence. Then some trickery to compare THH with some other
THH and one related to HH.
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3 Arunima Ray’s mini course

3.1 Talk 1

Three lectures:

1. Intro to 4-Manifolds and slice knots/links

2. Applications to smooth structures

3. Connection to surgery theory

This is a talk in low dimensional topology which is a subset of geometric topology. The lectures will
be in increasing order of difficulty.

Recall: closed means compact and without boundary.

Why are we interested in 4-manifolds? Assuming manifolds are interesting, 4-dimensional mani-
folds are particular among these. In particular, the behaviour varies quite a bit depending on dimension

1. Dimension n = 1, 2 and 3 (See Rado 1925, Moise 1952)

(a) The fundamental group is quite restricted
(b) Every topological manifold has a unique smooth structure.
(c) (−)
(d) Rn has a unique smooth structure.
(e) The Poincarré conjecture is true. (a homotopy sphere is a smooth sphere)

2. Dimension n = 4

(a) Every finitely presented groups is the fundamental group of some closed manifold of dimen-
sion n

(b) There exists topological manifolds with no smooth structure at all, and there exists some
with many smooth structures (see Siebenmann Rochlin in the seventies)

(c) There exist closed topological manifolds admitting countably many smooth structures (and
for closed manifolds there can’t be more than countably many). (see Fintushel Stein 1998)
one example is the K3 surface.

(d) Rn has unaccountably many smooth structures. (Taubes 87)
(e) The topological Poincarré conjecture is true (See Freedman 1982), but the differenital

Poincarré conjecture is still open

3. Dimension n = 5 or higher

(a) Every finitely presented groups is the fundamental group of some closed manifold of dimen-
sion n

(b) There exists topological manifolds with no smooth structure at all, and there exists some
with many smooth structures. (see Siebenmann Rochlin in the seventies)

(c) Every closed topological manifold has finitely many smooth structures (possibly none) (See
Kirby and SiebenMann in the seventies), this is via something called ”product structure
theorem” which translates the problem into homotopy theory

(d) Rn has a unique smooth structure. (Stallings 1962)
(e) The topological Poincarré conjecture is true (Smale 1960, Newmann 1966). The differenital

Poincarré conjecture is generally false.
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Another way to distinguish dimensions is what tools are available to us. For example in high
dimension (higher than 5) we have both the topological and differential s-cobordism theorem (see
Smale, Bouden, Mazur, Stallings, Kirby, Siebenmann) and the topological and differential surgery
(exact) sequence (Browder, Novikov, Sullivan, Kirby, Siebenmann).

These two tools are really powerful ”hammers”, which make high dimensional topology in some
sense ”easy”.

In dimension 4, we do not have the differential s-cobordism theorem or the differential surgery
sequence (see Donaldson). But we do have the topological s-cobordism theorem and the topological
surgery (exact) sequence for some fundamental groups (see Freedman 1982, Freedman-Quinm 1990).

As one can see, when we are not considering smooth structures, 4-manifolds are very alge-
braic/homotopic, when we consider smooth structures, the story changes quite drastically. And in
addition we have access to very geometric theorems/techniques because of how low dimensional the
situation is.

Okay now let’s talk about knots/links.

Definition 2. A knot is a smooth embedding S1 → S3 and a link is a smooth embedding ⊔S1 → S3.
(everything is oriented)

Proposition 1. A knot is trivial if and only if it bounds a smoothly embedded D2.

Definition 3. A knot K is said to be smoothly slice if we can extend the map ι ◦K : S1 → S3 → D4

to a smooth embedding D2 → D4.

Intuitievely, slice knots generalize the unknot in so far as the disc which it bounds is allowed to
”leak” into an extra dimension.
One example is given by the steveadore knot no idea if I spelt it correctly.

Definition 4. A knot K is said to be topologically slice if we can extend the map ι◦K : S1 → S3 → D4

to a locally flat embedding D2 → D4.

Both the notion of smooth and topological slice can easily be generalized to links. A slice link
L : ⊔S1 → S3 is freely slice if π1(B4\ ⊔D4) is a free group.

Theorem 3. (proven in next talk) Every knot which is topologically slice but not smoothly slice gives
rise to an exotic smooth structure on R4.

Theorem 4. The topological 4D surgery sequence is exact for all fundamental groups if and only if
every ”good boundary link” is freely slice.

3.2 Talk 2

The talk starts with discussing that the steveadore knot is smoothly slice (and not trivial), but because
this is visual and I don’t want to draw in tex.

To visualize 4 dimensional space, there will be some flip book stuff going on, say we have 4-
coordinates (x, y, z, t) we visualize one t at a time. For embeded knots this works pretty well, because
we can use planar diagrams to visualize (x, y, z, ti) (fixed t) as R2.

Historically: Resolution of singularities. Let Σ be the solution set for z2 = w3 in C2. Take a small
epsilon ball B4

ϵ about the origin, now we can consider Σ ∩ ∂B4
ϵ is a 1-dimensional object in S3, i.e

a knot, it turns out it is in fact the trefoil knot. Cheating and drawing Σ in R2, we see there is a
singularity at the origin. And we see that one way to resolve this singularity would be if Σ∩B4

ϵ were
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slice. This is a historical motivation.

Problems of this type are often interesting, sadly in this case it is not slice. How can we see this?
With the Alexander polynomial.

Definition 5. Let K ⊂ S3 be a knot, by Alexander duality H1(S3\K) ∼= Z, so denote by ˜S3\K
the cover of the knot complement corresponding to the subgroup [π1(X), π1(X)] (X = S3\K). This
covering space has by deck transformation an action of Z. By homology with coefficients the following
is defined

H1(X̃mZ[t, t−1])

We call it the Alexander module of the knot. It turns out to be a torsion module over Z[t, t−1]. Then
the Alexander polynomial is ∆K(t) = ord(Alexander-Module(K)). I think this can be interpreted as a
generator for the ideal of Z[t, t−1] annihilating the Alexander module.

We can replace Z by Q to get the rational Alexander module, yielding the same notion of Alexander
polynomial (in which case the twisted coefficient ring is a PID, so ideals have a generator well defined
up to multiplication by units, which can be nice). It is only defined up to multiplication by unit.

Why is this interesting? By a theorem of Fox-Milnor which says that for a topologically slice knot
K the Alexander polynomial has the form f(t)f(t−1). And by an ”easy” computation, we have that
the Alexander polynomial of the (right oriented) trefoil knot is t− 1 + t−1 is not of the required form,
thus not slice.
We also have a kind of inverse, which is a theorem of [Freedman-Quinn,90], which is that if the Alexan-
der polynomial is 1, then the knot is Topologically slice.

A theorem of [Quinn, 86], locally flat submanifolds of 4-manifolds have normal vector bundles.
This means something for locally flat embeddings ∆ : D2 → B4, there exists a neighborhood of ∆
homeomorphic to ∆×D2.

Unsuprisingly there exists topologically embedded discs in B4 which aren’t locally flat ad some
which are locally flat but not smooth.

One example which is interesting, but I didn’t quite catch why: the Whitehead doubles of a knot,
denoted by Wh(K), it turns out these always have trivial Alexander polynomial, thus are always
topologically slice.

It is now time for the promissed result:

Theorem 5 (Gompf). Every knot which is topologically slice but not smoothly slice gives rise to an
exotic smooth structure on R4.

One example is given by by the Whitehead double of the right handed trefoil knot.

Proof. Given a K ⊂ S3 a topologically slice knot, then by the Trace embedding lemma, we get a
a topological embedding Xk → R4. One can relatively easily believe that Xk is smooth, so we can
smooth ϕ(Xk).
We proceed by way of contradiction. Now we can consider R4\ Int(ϕ(Xk)) is a connected, non compact
4-manifold with a smooth structure on the boundary (this isn’t necessairly obvious). By a result of
[Quinn, 80s] we can give the entire manifold a smooth structure. In total we get a smooth structure on
R4, call R4 with this smooth structure R. Suppose we have a dffeomoprhism R ∼= R4, we would have
a smooth embedding Xk → R4, which would imply that K is smoothly slice by the trace embedding
lemma, which is the desired contradiction.

key tool for the proof:
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Lemma 1. (Trace embedding Lemma) A knot K ⊂ S3 is smoothly/topologically slice iff the trace XK

can be embedded in R4 smoothly/topologically.

Proof. (⇒) This is done by a picture, which I will not be drawing.
(⇐) It is fact that any two orientation preserving (smooth/topological) embedding of B4 are ambient
isotopic. So we use this result on the embedding, to get an embedding which fills the top hemisphere,
and thus kinda gives a result (the picture helps, which I did not draw).

Okay but what is a trace

Definition 6. Given a knot K ⊂ S3, the trace XK is what we get by attaching a ∂D2 × D2 to a
tubular neighbourhood of K seen as a subset of B4. In words we attach a two handle to a four-ball at
the knot embedded in the surface of the four-ball.

3.3 Talk 3

There exists an idea to use knots/links and their slice properties to disprove the smooth 4-dimensional
Poincarré conjecture, essentially done by removing a 4-ball from a 4-dimensional manifold, putting a
knot in the boundary S3, then seeing if this knot is slice in this specific case. Then maybe we can
find a knot which is slice in an exotic sphere but not in a true sphere, thus showing that the exotic
4-sphere is genuinely exotic.

Today we talk about the surgery conjecture and its connection to knots and links.
Recall the result of Freedman and Quinn which says that a knot of Alexander polynomial 1 is topo-
logically slice. Which is the same as saying that the alexander module is trivial, which by some local
coefficients and dimension Hurewicz stuff is equivalent to saying that π1(S3\K)(1)/π1(S3\K)(2) = 0,
i.e the first derived subgroup ()(1) is perfect.

Definition 7. An n-complete link L is a good boundary link if there exists a map ϕ : π1(S3\L) ↠
Free(n) whose kernel is perfect.

For example every Alexander polynomial 1 knot is a good boundary link. Or If L has pairwise
linking number 0, then the Whitehead double is a good boundary link.

The exactness of the surgery sequence being exact for all π1 implies that every good boundary link
is freely slice. This is not that surprising, what is surprising is that it goes the other way.

What is the surgery sequence though?

Let X be a topological closed 4-manifold, then its (4-dimensional) surgery sequence is

S(X)→ N (X)→ L4(π1(X))

The L4 group is purely algebraic, which consists of non singular quadratic forms (Z[π1(X)]-module
equipped with two forms) which satisfy some properties quotiented by stably hyperbolic quadratic
forms. Usually S is the one we are interested in, it is the group of closed topological 4 manifolds
over X up to cobordism. And N are the normal maps from closed topological 4-manifolds to X up
to normal bordism. This can also be described as [X, K(Z/2Z, 2) × K(Z, 4)]. When we talk about
exactness of the surgery sequence, we obviously mean exactness at N . We just zoomed in a specific
place in the sequence, it continues for a while. This (in all its generality) is arguably one of the most
powerful tools in manifold topology.

The knot stuff helps us with the geometric interpretation of showing that Ker ⊂ Im. Let L ⊂ S3,
let ML = ∂XL where XL link trace. Note that ML is the result of 0-framed Dehn surgery on S3 along
L.
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Theorem 6. (Folklore) Let L ⊂ S3 be a link. It is topologically slice if and only if ML = ∂W 4 where
W is connected, compact (topological 4 manifold) such that H1(ML) ι∗−→ H1(W ) is an isomoprhism,
π1(W ) is normally generated by meridians of L and H2(W ) = 0.

Proof sketch that ever good boundary link is slice implies that every surrgery sequence is exact
(i.e for all fundamental groups)

Proof. Let g : N → X be a degree one normal map, to show the desired result, it suffices to arrange
isomoprhisms on π1 and π2.
We can ”do surgery on circles” on N to change g to a π1-isomorphism, because the assumptions al-
ready imply surgery.
Now let’s work on π2, we already have a surjectivity by degree 1ness, so we need to kill the surgery
kernel K2(g) = ker(π2(g)). We need to use the assumption that the image in L4 is trivial, we do this
by viewing K2(g) as a π1(X) module, which we can do by π1 isomorphism, and then some restriction
stuff to make it a non singular quadratic form, which is stably hyperbolic by assumption of being
trivial in L4.
This for mysterious reasons implies that generators of K2(f) can be represented by generically im-
mersed spheres which have some properties with respect to the forms.
Now there is some subtlety that in dimension 4 the algebra and geometry are different enough that the
obvious idea won’t work (whatever that is), but instead we get some insane knots which were drawn
on the board. These insane knots come form Kirby calculus. We use this insane knot to construct
a four manifold in N , which we will remove, and then perform 0 surgery on a good boundary link,
which by the Folklore theorem we can glue back an even nicer 4-manifold.

13



4 Talks

4.1 SOFÍA MARLASCA APARICIO: Ultrasolid homotopical algebra

You can think of condensed R-modules as a way to make categories of ”topological modules” abelian
(because usually they aren’t). Now let S be a profinite? space, we can form the free condensed
k-module K[S]□ = lim←−K[Si]. As opposed to just the free module K[S].
A condensed module M is solid if for every profinite S we have

Mor(K[M ]□, M) ∼= Hom(K[S], M)

Theorem 7. If K = Q,Fp, then solid modules form an abelian subcategory closed under (co)limits
and has a compact projective generator

∏
I K.

Definition 8. A profinite vector space is a cector space of the form
∏

I K and we set Mor(
∏

I K, K) =⊕
I K.

We write Pro(V ectω
K) for the category of profinite K-vector spaces. A module is ultrasolid is

it lies in the sifted cocompletion of Pro(V ectω
K) (i.e closure under filtered colimits and reflexive co-

equalizers, which because we are in an abelian setting is the same as closure under sums and cokernels).

We call this category (of ultrasolid K-modules) Solid♡
K and denote sifted cocompletion by PΣ0 .

Now we will be able to define Ultrasolid K-algebras if have a symmetric monoidal structure. On
Proj(V ectω

K) this can be done by
∏

I K ⊗
∏

J K =
∏

I×J K

Definition 9. An ultrasolid K-algebra is a commutative ring object in Solid♡
K .

Definition 10. An augmented ultrasolid K.algebra is a an ultrasolid K-algebra R equiped with a map
R→ K which is a retract of the inclusion K → R.
Further we call it complete if R ∼= lim−→R/mn where m is the augmentation ideal. It is profinite if the
underlying ultrasolid module is a profinite vector space.

Theorem 8. (Ultrasolid Nakayama) Let R be a complete ultrasolid K-algebra, let M be a profinite
R-module, and m the augmentation ideal, then

M/mM = 0⇒M = 0

There is a choice between derived (simplicial rings) and spectral algebraic geometry (connective
spectra), we are going to do derived.

Now we change of topics, and talk about deformation theory for some reason.
Let X be a proper smooth variety over K, and A be a some K algbera with residue filed K (with
other assumptions), then a deformation of X over A is a flat map X̃ → Spec(A) such that we have a
pullback square:

1. X in the top left

2. X̃ in the top right

3. iel a effacé trop vite...

A formal moduli problem is a functor X : CAlgsmth
smthelse → S where S is smth such that X(∗) ≃ ∗

and it preserves certain pullbacks.
And then... they end the talk on some theorem, there was some PDF for the talk which I will

download.
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4.2 TONY MBAMBU KAKONA: Differential bundles in tangent infinity cate-
gories

1. tangent categories

2. differential bundles

3. classification

4. Smth else (infinity category setting?)

A tangent category aims to generalize manifolds to other categories. There is a bunch of stuff in
the category of smooth manifolds, we will define a ”tangent category” to be a category X with:

1. A functor T : X → X which acts like taking the tangent bundle

2. Nat transformation p : T → Id

3. And a bunch of other stuff which can be guessed from properties of the tangent bundle

Tangent categories are a general framework for geometric settings, categories in differential geometry,
algebraic geometry, etc. are all tangent categories. They also appear in abelian categories, where
there is some notion where tangent categories capture a bit of functor calculus.

Example 1. Non geometric example, let N• be the category of free N modules, then Tangent structure
is given by T (Nk) = Nk × Nk.

There is a natural notion of functor of tangent categories, called ”lax tangent functor”, which is
to say F : (X, TX)→ (Y, TY ) and a natural transformation α : FTX → TY F which makes everything
commute, there is also a notion of natural transformation of lax tangent functors.

Okay now part 2, in a tangent category we can define a tangent bundle E over M , which has
some properties. This abstract characterization (which I did not specify) is a good notion because
the tangent bundles in the tangent category of smooth manifolds is exactly the vector bundles (as
desired). A differential object is a differential bundle over the terminal object.

We call a functor F lax differential if T n ◦ F preserves pullbacks over the terminal object and the
map α : F ◦ TX → TY ◦ F is cartesian, i.e the naturality squares are pullbacks. We call F strong
differential if further it preserves the terminal object.

There is a good example of a differential bundle in the category N• which is the projection N→ 0.
This is indeed a good example by

Proposition 2. Differential bundles in any differential category X are equivalent to lax differential
functors F : N• → X.

This theorem can be used as a definition of differential bundles in the infiinity category cases if we
can replace N• by an approriate infinity categorical replacement. It turns out E = N•(Span(FinSet))
is a good replacement for this as Fun(N•, C) ∼= Mon(C) and Fun(E, C) is equivalent to E∞-monoids
in the infinity category C.
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4.3 SHAI KEIDAR: Higher Galois Theory

So recall some stuff about classical galois theory. But rephrase the definition to be better for general-
ization

Definition 11. A field F is a G extension of E if we have an inclusion E → F and a G action on
F such that

1. F G ∼= E

2. F ⊗E F ∼=
∏

G F

With this definition we can really nicely generlize, let C be a symmetric monoidal category. And
R ∈ CAlg(C) and G a finite group. Then

Definition 12. A S ∈ CAlg(C) is a G extension of R if we have a map R → S and a G action on
F such that

1. ShG ∼= R

2. S ⊗R S ∼=
∏

G S

One example of where we could do Galois theory is with spectra where we have pretty cool theo-
rems (also cool thing, these ideas come from Rognes).

Definition 13. We call R ∈ CAlg(Sp) is connected if π0(R) is connected as an algebra

Consider PrL the category of presentable categories, this comes equipped with the (Lurie) tensor
product.

We have classical Galois descent, which is to say if E ⊂ F is a G extension, then V ecthG
F
∼= V ectE

We call an E1 space m finite if it is m-trucated and all non trivial homotopy groups are finite.

Why do we introduce this, as an example of a different finiteness notion to work. We don’t actually
need to work with finite groups to have a galois theory for an arbitraty for a category C, we need to
work with groups that C considers small, and this can vary wildly depending on C (sometimes it even
includes less than all finite groups).

Definition 14. A category is m-semi additive, if colimits and limits over m finite spaces agree. We
say infinity semi additive if semi additive for all m

Many categories are ∞-semi additive. This is enough for finite groups to be small enough to do
Galois theory (I think).

He is talking a bit fast for me to understand much... and definitely too fast to write down enough
for these notes to be rly useful.

He wrote at some point V ec
(n)
C which is the n-fold categorification of V ecC, I am a bit unclear on

what this means.

Example of a result, the galois closure of V ectC is the category of C2-graded vector spaces (or
super vector spaces).

There is some ”Tio” guy who seems to work with stuff like n-extended TQFT, which are functors
from the infinity category Bordn →

¯
V ect

(n)
C the algebraic closure of the category V ec

(n)
C . Which relates

generalize Galois theory and TQFT, sounds interesting.
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4.4 MAX BLANS: On the chain rule in Goodwillie calculus

So what is it? In one sentence it is a theory for approximating functors in homotopy theory with
easier functors.

Let F : Top∗ → Top∗ be a functor, then Goodwillie calculus gives a tower · · · → PnF → Pn−1F →
· · · which can approximate F , such that under good circumstances the inverse limit of the tower is
F . The intuition is that it interpolates between the stable and unstable part. We understand the
fiber of PnF (X) → Pn−1F (X) pretty well, as the infinte delooping of a certain spectra Ω∞(∂nF ⊗
Σ∞Xsmth)smth.
The important part is the ∂nF , called the derivatives of F . These fit into a symmetric sequence (same
notion as in the theory of operads)

(∂1, ∂2, ...)

The category of symmetric sequences is monoidal under the composition product ◦. The algebras in
the category of symmetric sequences of spaces are the operads on spaces.
The natural question, given that the derivatives fit into a symmetric sequence, is whether in fact they
form an Operad.

Theorem 9. (Ching 2005) The derivatives of the identity ∂∗IdSp is the Lie operad in Sp.

An example of why we care about the lie operad

Theorem 10. (Heurts 2018) The category of vn periodic spaces is equivalent to AlgLie(SpT (n))

Arone and Ching constructed for every F : Top∗ → Top∗ a ∂∗IdT op∗-bimodule structure on ∂∗(F ).
(where the algebra structure is given by Ching’s 2005 theorem).
Then using this we can formulate

Theorem 11. (Chain rule) We have the following chain rule for Goodwillie calculus

∂∗(FG) = ∂∗(F ) ◦∂∗(Id) ∂∗(G).

There is a conjecture to generalize this which is that for a category C which has a Goodwillie
calculus. then

∂∗ : Funn(C, C)→ SymSeq(Sp(C))

is lax monoidal. By the subscript (−)n we mean functors nice enough to admit the Goodwillie calcu-
lus and Sp(C) is the ”stabilization”. This conjecture implies many nice things because Lax-monoidal
functors preserves algebras and modules, and the identity is clearly an algebra in the domain and
every functor is clearly a module over the identity. Thus when this conjecture holds, we get some of
the above results ”for free”.

This conjecture has been shown to hold for ”presentable differentiable categories”, and in fact in
this case we have the chain rule in the sense that the natural map ∂∗(F ) ◦∂∗(Id) ∂∗(G) → ∂∗(FG) is
an equivalence.

In fact this result was then upgraded to a more infinity categorical language.
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4.5 KAIF HILMAN: Parametrised Functor Calculus and a universal property of
Mackey Functors

Alternative title: Equivariant to Goodwillie dictionary.

”Review” of Goodwillie calculus: Let F : C → D be a functor between ”stable” categories which
is ”reduced” (i.e preserves the 0 object). Then we have a tower · · · → PnF → Pn−1F → · · · such that ...

Detection (cross-effect): Given a functor as above, then we have a functor crdF : Cd → D. Then
we have a trick to measure exscivieness (i.e for what n we have F ≃ PnF is an isomorphism). The
tool is that if a functor is n-excisive and crn(F ) = 0, then it is actually n + 1 excisive.

Classification: In some cases (All??) we can take the fiber DdF = Fib(PdF → Pd−1F ) and in
some cases we know what this fiber is.

The goal is to establish a dictioary between equivariant homotopy theory (with finite groups) and
goodwillie calculus.

1. Genuine G spectra SpG ≃ Mack(OG, Sp). The category of d-excisive endofunctors of spectra
corresponds to Mackey functors from the category of finite sets with morphisms surjective up to
d elements into spectra.

2. Geometric fix edpoints: In the case G = Cp, we have a pullback square, with top left XCp , top
right XΦCp , bottom left XhCp and bottom right XtCp . We can recover the taylor tower of F
just from the symmetric sequence of the derivatives.

The category of spectra is the initial smth smth and categories of Mackey functors is initial in
smth smth else...

We use this idea (which I didn’t really understand) to construct a category Sp
d

which is a ”gadget”
category used to construct the equivalence. It is a d-”parameterized” categories, which means we have
one category for each integer 1 ≤ r ≤ d. The point is that if we can construct a category carefully, we
can get a map for free by the universal property, so we just have to show it is an equivalence, which
will be done by induction, which makes sense because we are in a ”parameterized” world.
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4.6 Milicia Jovanovic: Cohomology operations on Polyhedral products

We want to define the polyhedral product, let K be a simplicial complex with m vertices and let
(Xi, Ai) be m topological pairs. WE define (Xi, Ai)K to be the polyhedral product as the colim over
σ ∈ K of (Xi, Ai)σ =

∏
Yi with Yi = Ai when i /∈ σ and Xi if i ∈ σ. (I think unsure I was able to

copy correclty)

If we let K to be disjoint union of m vertices, the polyhedral product gices the wedge of the Xi

and if K = ∆m we get the product of the Xi, so polyhedral product interpolates between these. In
the case (Xi, Ai) = (D2, S1) for all i we speak of a ”moment angle complex”. Because for moment
angle complexes the only choice is the simplicial complexx, so we get a functor Ob(SimCpx)→ Top.

Recall Steenrod squares, written Sqk : Hn(−,Z/2Z) → Hn+k(−,Z/2Z). They assemble into the
Steenrod algebra.

Okay now lets try and work on some simple cases:

1. Davis Januskiewicz space DJK = (CP ∞, ∗)K . (Did not write out the details of the example)

2. In general we can understand the action on polyhedral products of the form (X, ∗)K , i.e with
the pair’s constant equal to a pair (X, ∗).

3. For moment angle complexes we can understand the cohomology as a tor-algebra. One particular
study which can be done is that if ZK is the moment angle complex of K, then ΣZK splits, and
we can kinda study the Steenrod action from this.

4. We can apply the above idea to K = P 2
6 a minimal decomposition into a simplicial complex of

RP 2 which is in some sense the minimal space with non trivial Steenrod action.

In the definition of polyhedral product, we can replace the product by other stuff, and still get
smth interesting?

At the end of the talk, they discussed how non trivial Steenrod action can propagate to polyhedral
products and related stuff.
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4.7 VICTOR SAUNIER: Trace methods for stable categories

Joint work with Y. Harpaz and T. Nikolaus

Motivation (?) from linear algebra: Let A be a real matrix, sps we want to know it’s determinant.
Well this can be quite hard. But In some cases we can do nice stuff, i.e det(I +ϵA) = det(I)+ϵtr(A)+
o(ϵ).
This follows from several different ways, the speaker gave a proof using:

1. that the trace is uniquely characterized by

(a) linearity
(b) tr(AB) = tr(BA)
(c) tr(E11) = 1

2. det(I + AB) = det(I + BA)

3. now show that the linear part of det(I + ϵA) satisfies the defining properties of the trace.

In fact more generally we have a nice interaction of the two det ◦ exp = exp ◦ tr and something
similar.

In this talk, let’s use the perspective that K-theory is a functor from the infinity category of stable
infinity categories to spectra: K : Stable→ Sp. The goal of the talk is to convince that K-theory is a
”determinant” for stable infinity categories.

Definition 15. Let F : C → D be a functor of stable infinity categories, we define C ⊕F D to be the
pullback of C

F−→ D → D
cod←−− D∆1.

Definition 16. A functor of stable infinity categories F : C → D is called additive/splitting if
Stable→ Sp sends C ⊕F D to the direct sum of the spectra associated to C and D.

Theorem 12. There is a natural transformation Σ∞ ◦ |−|◦Core→ K which is initial in the category
of splitting funtctors under Σ∞ ◦ | − | ◦ Core.

If C has finite limits and it is pointed, then it can be stablized by taking an inverse limit of
· · · Ω−→ C

Ω−→ C
Ω−→ · · · , call it Sp(C). From Goodwillie calculus we have the intution that stable stuff

is in some sense linear, so linear approximation at a point should kinda be ”tangent” stuff

Definition 17. We define TXC = Sp(CX//X), these can assemble together into a ”tangent” bundle
TC → C

Now natural question in light of the goal mentionned above, what is tangent stuff in the category
of stable infinity categories?

Theorem 13. (Someone-Nikolaus-S.) TC Stable ∼= Funsmth(Cop ⊗ C, Sp)

Then he started talking really fast, so I wasn’t really able to understand, but in essence he defined
a bunch of stuff to state

Theorem 14. The linearization of Kcyc in M is THH(C, M) = tr(M)

This seems really interesting, I really would like to understand more about what he said, because
it all seems very interesting, but it went a bit over my head. Maybe search up Harpaz, Saunier and
Nikolause on Arxiv
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4.8 BRANKO JURAN: The algebraic K-theory of algebraic tori via equivariant
homotopy theory

The plan is to explain the words, joint work with Conrad, Riebel and Bai (no idea if I spelt the name
right).

Algebraic K-theory:

Definition 18. Let R be a commutative ring, then consider P (R) the category of finitely generated
projective modules. Then K0(R) = π0(P (R))Gr.

Definition 19. Let K(R) = BIso(P (R))gr, this is a connective spectra, whose homotopy groups are
the K-groups

Remark 15. Remark, K-theory is defined for schemes as well (Quillen 1973).

There are some properties (assuming Noetherian and regular)

1. (homotopy invariance) i.e K(R)→ K(R[t]) is a weak equivalence.

2. (Localizing) Let X be a scheme and U ⊂ X an open subscheme, then we have a fiber sequence

K(X\U)→ K(X)→ K(U)

One example computation using only these two properties is that K(F [t, t−1]) = K(F )⊕ ΣK(F ).

Okay nice little intro, let’s talk about algebraic Tori.

Definition 20. An algebraic torus over a field F is a group scheme T defined over Spec(F ), such
that TF̄

∼= Spec(F [t, t−1])n.

Definition 21. A topological torus is a connected commutative compact Lie group.

Proposition 3. The category of topological toris is equivalent to the category of finitely generated free
abelian groups. By the map that sends a torus T to MapLie(S1, T ).

Proposition 4. The opposite category of algebraic tori over F is equivalent to the category of finitely
generated generated abelian group equipped with an action of Gal(F ) the absolute Galois group. This
map sends T to Map(TF̄ , Spec(F̄ [t, t−1])). This map is called Λ∗.

Combining the above two result we get that algebraic tori over F are equivalent to topological tori
with an action of Gal(F ).

Now we move on to ”the result”. Recall K(Spec(F [t, t−1])n) = K(F )[(S1)n]. Now for X an
F -scheme, we have an equivariant spectra K(X) ∈ SpGal(F ).

Theorem 16. Let T be an algebraic torus over F , thn there exists an equivalence

K(T ) ∼= K(F )[BΛ∗T ]
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4.9 NINGCHUAN ZHENG: Equivariant algebraic Ktheory and Artin L-functions

The first part is about algebraic K-theory and zeta functions, the second part is about twisted Quillen-
Lichtenbaum conjectures.

What are the Riemann and Dedekind Zeta function. Let F be a number field. The Dedekind zeta
function is

ζF (s) =
∑

0 ̸=I⊂OF

1
(#OF /I)s

Taking F = Q yields the classical Riemann zeta function, and properties of ζF look a lot like those of ζ.

The Dirichlet unit theorem and class number formula can both be formulated as special values or
numbers related to ζF . In particular

ords=0ζF (s) = rankZ(O×
F ) = rankZ(K1(OF ))

And
ζ∗

F (0) = classnumber

(and this one can also be related to some K theory thing)
We see some connection between Dedekind functions and K-theory.

For finite fields, we also have some nice stuff. Define

ζF (Fp, s) = 1
1− p−s

The K theory of Fp is fully known, and so one can more or less directly ”notice” a version of the
Quillen Lichten-Baum conjecture.

Then there is a slide mentioning the result of Borel which computes the rank of K-groups of integer
rings of number fields. And then mentionning the Quillen-Lichtenbaum conjecture.

Now the Quillen Lichtenbaum conjecture is nice, but in number theory we have Dedekind zeta func-
tions which are twisted by Galois representations, called Artin L-functions, can we obtain a ”twisted”
version of Algebraic K-theory such that we get a ”twisted” Quillen-Lichtenbaum conjecture. And this
guy did some of that.

Okay so... equivariant algebraic K-theory. There is a theorem which says that the equivariant
algebraic K-theory of G-Galois cover of schemes admit a genuine G-spectrum structure. And then it
gets really complicated.
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4.10 VALENTINA ZAPATA: CASTRO Monoidal (infty, n)-categories

Recall: a category is ...

An (∞,∞) category is smth with 0-morphisms, 1-morphisms, ..., n-morphisms, ...
An (∞, n) category is an (∞,∞) category where all the k-morphisms are invertible for k > n.

A general persepctive is that (∞, n) categories are enriched over (∞, n− 1) categories.

Recall: a simplicial set is...

Recall: A bisimplicial set (or simplicial space) is a ...

There is a model category structure on the category of bisimplicial sets denoted CSS (complete
segal space) which is good for modeling (∞, 1) categories.

Definition 22. Let C be a small category, we define θC to be the category with objects pairs ([m], (c1, ..., cm))
([m] an ordered set) and morphisms are given by (δ, {fij}) where δ ∈ Fun([m], [n]) and fij : ci → dj,
but only defined for i, j such that δ(i− 1) < j ≤ δ(i).

Definition 23. We define θ0 : 1 and then define inductively θn+1 = θθn.

Definition 24. We define a θn-space to be a contravariant functor from θn to sSets. These assemble
into a category.

Theorem 17. (Rezk) There is a model structure on θn-spaces which is a good model for (∞, n)
categories.

Now we can define monoidal (∞, n) categories. We do this by ”generalizing” the definition of a
monoid as a category with one object.

Definition 25. An (∞, n)-category with a monoidal structure is an (∞, n + 1) category with one
object.
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4.11 SVEN VAN NIGTEVECHT: A synthetic version of topological modular
forms

The goal is to resolve a circularity in the computation of some spectral sequence for TMF.
Why care? A lot of understanding of the stable stems comes from TMF.

Question: How do we understand πn(S) for large n.
Answer: Test it against other spaces.

Question: Given a map f : S→ X how do we understand πi(f)(a) for some a ∈ πi(S).
Answer: For example with functorial spectral sequences which compute homotopy group. i.e the
Adams Novikov spectral sequence (abbreviate to ANSS).

We will test the sphere spectrum against K-theory and topological modular forms.

So we use the ANSS for spectra representing K-theory/TMF, and then after understanding it, we
use a (nice) map S→ KO (or some other). This map will give a map of spectral sequences, so we can
use our understanding of the ANSS of KO to ”detect” information in the ANSS of the sphere (and
thus let’s recall we detect information of the stable stems).

There are three versions of TMF. tmf is connective, TMF is periodic, Tmf is neither.

In some specific case, this strategy doesn’t act like one would hope, so we work with synthetic
spectra instead,

What are synthetic spectra? E-Synthetic spectra are to E-Adams spectral sequences what spectra
are to homology.
The infinity category of synthetic spectra SynE is amazing, like it has all the nice properties we would
want it to have.
It comes with a couple functors, ν : Sp→ SynE called synthetic analog, a functor SynE → SSeq (the
category of spectral sequences) such that precomposing with ν yields the Adams spectral sequence.
And a third functor p : SynE → Sp.

There is a ”Synthetic” analog of Tmf called ”Smf”.
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4.12 Kaelyn Willingham: Spectral properties of the algebraic path problem

Plan

1. The algberaic path problem

2. Motivation: link prediction

3. Cellular Sheaf theory

4. The Sheaf laplacian

What is the algebraic path problem, generalizes path problems on graphs under a single construct.
E.g the shortest path problem or ”transition probability problem”.
(He gave an example of a graph and it seems to imply that our graphs are directed)

Determining the shortest path algorithmically is not an easy thing to do, but we have methods:

1. Dikjstra’s algorithm

2. Bellman Ford Algorithm

3. A∗ search algorithm

4. Floyd Warshall algorithm

5. Johnson’s algorithm.

6. Another one which he changed the slides too fast

The Bellman Ford algorithm is mathematically interesting bc it allows negative edge length, but:
it isn’t made to be efficient, and it can run into ”runtime” errors if you have an edge which is a self
loop of negative length (bc then to minimize length, the algorithm wants to go around forever to send
the length to negative infinity).

This algorithm can be generalized to any ∼ ring things, seen as a graph? Okay I didn’t really
understand the equation.

The transition probability problem is take a graph where length of edges is 0 or 1, consider a
random walk on this graph, then we can ask ”what is the likelihood to go from v1 to v2”, and this
can be solved by phrasing it as a Markov chain. An algorithm which solves this problem is the google
page rank problem.

A link prediction problem, is given a collection of vertices, and a random graph, what is the prob-
ability that two given vertices are connected.

A generalization of all the above problem, is to take graphs in the category of vector spaces.

Then for some reason a natural question is to interpret ”higher dimensional” algebraic path prob-
lems in terms of cellular sheaves, at which point we have access to homology theories and stuff.

A cellular sheave in a category D on a cell complex Ω is a covariant functor F : PΩ → D.
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4.13 ZACHARY GARDNER: Moduli of truncated prismatic (G, mu)- displays

I missed the beginning of the talk due to delay in the other talk.

Heuristic: p-divisible groups capture the p-local pieces of abelian schemes.
We fix n the level, h the height and l the dimension.

Theorem 18. The category of p divisble groups is equivalent to the direct limit of level n p-divisble
groups.

The category of p divisible level n groups is a smooth Artin p-adic formal stack.

The category of p-divisible level n + some other property is a smooth, quasi-compact, 0-
dimensional, p-adic Artin Formal stack.

The functor p− divSmth
n+1 → p− divSmth

n is smooth and surjective.

Suppose F is a perfect field of characteristic p, then we can associate to it W (F ), the ring of Witt
vectors, which we should view as the ”p-adic power eries w/ coeff in F”.
For example W (Fp) ∼= Zp (the p-adic integers)

Definition 26. A Dieudonné module over F is a morphism is a pair (G, E), where G : E → E is a
morphism in V ect(W (Fp)) and we require G to be ϕ-linear, where ϕ is the Frobenius map.

This construction is useful, e.g because

Theorem 19. The p-divisble groups are isomorphic as a category to the category of Dieudonné modules
over Fp.

The goal/dream/idea is to generalize the above result, as a first step to perfect Fp-algebras.

Okay now we will give a field tour of ”prizmatisation”
The prismatisation of a ring RP , is a formal p-adic stack associated to R.
There is a frobenius map RP → RP .
There is something called a De Rham point, which is a map from SpfR to RP

In the perfect case we have RP = Spf(W (R))

A filtered prismatisation RN is a filtered stack.

In the perfect case, this corresponds to giving W (R) the p-adic filtration.

Idea: replace p-divisible group of level n ny vector bundles over an appropriate space inside of RN .
You can think of RN as the freeest way to make R geometric.

Snytomification of R is a thing which they mentioned. Define: BTn(R) = V ect[0,1](Rsyn×Spec/Z/pZ
Spect/Z/pnZ). I have no idea what this talk is about.
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4.14 KAMEN PAVLOV On the homotopy classification of 4-manifolds with fun-
damental group Z× Z/pZ

All manifolds are topological, connected, closed, oriented.

Definition 27. For a space X, the Postnikov 2-type of X, written P2(X) is the 2-truncation pX
2 ; X →

P2(X)- This is determined by the k-invariant kX ∈ H3(π1(X), π2(X)).

Theorem 20. (Baues-Bleile, smbdys) Given two manifolds M, M ′. with the same Postnikov 2-types.
Then if H4(pM

2 )([M ]) = H4(pM ′
2 )([M ′]), then in fact M and M ′ are homotopy equivalent.

Recall the classical intersection form is the map I : H2(M) ×H2(M) → Z which sends (A, B) to
their intersection number.

Definition 28. Equivariant intersection form, is a map H2(Mu) ×H2(Mu) → Z[π1]. Which sends
(A, B) to

∑
g∈π1 I(Ag−1, B)g.

Dually, it is a map λM : H2(M,Z[π])×H2(M,Z[π])→ Z[π] given by < β, α ∩ [M ] >.

We have a neat way to bring this down to the Postnikov 2-type of M , by a map H4(P2(M)) →
Mor(H2(P2(M),Z[π]),Z[π]). Which is defined in some way.

Definition 29. A quadratic 2-type is the following collection of data Q(M) = (π1(M), π2(M), kM , λM )

It was conjectured/hoped this is a complete set of invariants for homotopy types of Manifolds. We
know this for some groups, e.g

1. finite cyclic

2. finite abelian 2-groups

3. finite dihedral

4. Z× Z/2Z.

But it in fact does not hold in general, for example it fails for π1 = Z × Z/5Z which can be seen
by considering L(5, 1)× S1 and L(5, 2)× S1. Now the conjecture only stands for finite groups.

Theorem 21. (Kasparovich-P) For the fundamental groups π1 = Z × Z/pZ where p is prime, then
for any given quadratic 2-type, there are at most p-homotopy types.

One tool was

Theorem 22. Given the cannonical map c : M → K(π1(M), 1), the class c∗([M ]) ∈ H4(π1(M),Z)/Aut(π1(M))
determines the π2(M) stably.
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4.15 EMMA BRINK: Equivariant bordism and Thom spectra

Theorem 23. (Thom, Pontryagin) θ-oriented bordism is represented by the Thom spectrum mθ

Let M be a smooth manifold with a map M → bO.

We have Oθ(M) = π∗(smth). By varying θ we get different bordism notions.

Bordism is a cohomology, so for a manifold with boundary we get a map Oθ(M)→ Oθ(∂M). We
have M θ

n(X) = smth this smth is cobordism classes of θ-oriented manifolds over X.

We have a functor Fun(Top/bO, Sp)→ Fun(bO, Sp), we have a J homomoprhism bO
J−→ Pic(Sp)→

Sp (she writes really small, so I kinda have no idea what is happening... :( )

Anyway this is all classic, to make it all equivariant we need to replace bO with aG-equivariant
analog. She does it for G compact Lie. And the construction is done by taking the spectra representing
the cohomology which sends X to the G-bundles over X. Everything is made equivariant by taking...
Fun(O(G)op, Cat∞)... maybe? no idea.

Something about parametrized homootpy theory which does something for equivariant theory.
Yeah I sadly will stop taking notes because I am unable to understand/concentrate/follow.
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4.16 ALICE ROLF: Endomorphisms and Automorphisms of the Framed Little
Disk operad

Let’s spoil le twist: the endomoprhism will be exactly the automorphisms.

Examples of operads:

1. The little discs operad Ed, where the n space is the space of affine embeddings ⊔nDd → Dd.
There is a natural action of Sn on Ed(n).

2. Framed little disc operad Eso
d , it is almost the same as Ed, only we allow rotating when embedding

the discs.

Up to homotopy Ed(n) ≃ confn(Rd). In particular Ed(2) ≃ Sd−1.

Definition 30. A map of operads f : O → P is a collection of N maps fn : O(n) → P (n) which are
Sn equivariant, and such that these maps respect the approriate notion of ”compositions”

And so now, question: what is Aut(Ed) (homotopy automorphisms)? It is quite mysterious.
We know: O(d) acts on Ed interestingly.
We also know the following suprising fact: H Homeo(Rd) acts interestingly on Ed.

Let’s draw some parralels

1. The groups homeo(Rd) admits a stabilisation morphism homeo(Rd)→ homeo(Rd+1).

2. Local automorphisms of manifolds

3. We have an inclusion Homeo(Rd) → Emb(Rd) which is a homotopy equivalence by Kister’s
theorem.

1. The groups Ed admits a stabilisation morphism Aut(Ed)→ Aut(Ed+1).

2. Local automorphisms of ”configurations in manifolds”

3. We have an inclusion Aut(Ed) → End(Ed) which is a homotopy equivalence by a theorem of
Horel, Krannich and Kupers.

Theorem 24. (by the speaker) The inclusion Aut(Eso
d )→ End(Eso

d ) is an equivalence

Some ideas of the proof:

1. Endomorophisms of Eso
d correspond to squares in Top commuting up to (specified) homotopy

with the top row an endomorphism of BSO(d) and the bottom row the identity of BAut(Ed)

2. We have a restriction map to the aritty 2 case BAut(Ed)→ BAut(Sd−1)

3. There is a result which says that U × End(SO(2n + 1))/Inn(SO(2n + 1)) → [BSO(2n +
1), BSO(2n + 1)] is a weak equivalence where U is some subset of the integers.
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4.17 JESSE COHEN: Bordered Floer theory, Hoschild homology, and links in
S1 × S2

The main result is there is a spectral sequence whose E2 page is the reduced Khovanov homology of
the mirror of a link and whose E∞ page is the Heegard Floer homology of the branched double cover
of L in S3.

And the above result is well known, he established a generalization.

What is Heegard Floer Homology? it is a functorial invariant of 3-manifolds and cobordisms be-
tween them.

It has a wide range of applications in low dimensional topoogy: e.g detecting manifolds fibered
over S1, exotic structures on manifolds, Z∞ summand in the 3-bordism group

A Heegard diagram for a three manifold M is a choice of a closed surface of genus g, i.e Σg, and
two collections of pairwise disjoint curves in Σg, say α and β.

Given this, we can construct Σg
g/(α∪β), this can be given the structure of a Kähler manifold, and

we se it to define the Heegard floer homology of M .

Khovanov homology is a combinatorially defined invariant of links and link cobordisms. We take
a link diagram, label them and form the cube of resolution by replacing resolutions by the ”formal
bigraded complex”. He is talking so fast oh my god. After doing that apply a 2-dimensional TQFT,
the one associated to the commutative frobenius algbera F[x]/x2. Homology of this is an invariant of
links, which is functorial with respect to link cobordisms.

It detects a bunch of stuff about links and exotic stuff in dimension 4.

These are hard to compute. So there is a thing called ”bordered Floer homology” is an invariant
of 3-manifold with boundary which is better than the non bordered case? Similarly to Heegard floer
homology, this admits a definition via bordered Heegard diagrams. The definition seems super hard.

The key ingredient in the speaker’s result is some technical result relating the chain complexes
defining the homology theories we just mentionned. Saying that they are homotopy equivalent under
some assumptions.

Let Cn be the set of crossingles matchings on 2n points, we can define a thing called a ”Khovanov
arc algebra” using this idea (no idea how).

He keeps saying ”quantum shift” and I have no idea why.

Notice that any link in S1 × S2 whose homology class with Z coefficients is divisible by 2 is the
closure of a tangle. Which is interesting bc it says something about one of the homologies we men-
tioned (I think).

Now I am quite lost I must say...
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4.18 MARCO VOLPE: Traces of dualizable categories and functoriality of the
Becker-Gottlieb transfers

Let X → Y be a map of topological spaces, then we have a map in homology S[x]→ S[y], obvious so
far! Now if f has finitely dominated homotopy fibers, we get a map the ”wrong way” S[Y ] → S[X],
called the transfer map (associated to X → Y ), this uses the technology of parametrized spectra
maybe?.
To make things easier, let’s work with even nicer maps, say proper locally contractible, in which case
we can construct the transfer map using the technology of sheaves.

Definition 31. Let X be a locally compact hausdorff space, then Sh(X, Sp) (which we denote Sh(X)
from here on out) is the category of contravariant functors τX → Sp such that for any open cover Ui

of U ⊂ X we have F (U) = limF (Ui).

Given a map f : X → Y by precomposition and contravariance we get a map f∗ : Sh(X)→ Sh(Y ),
now by abstract nonsense, this map has a left adjoint adjoint f∗ : Sh(Y )→ Sh(X).

Definition 32. We say that f : X → Y is locally contractible if f∗ has a left adjont f#. We call a
space locally contractible if the map ! : X → ∗ is locally contractible.

Example 2. For X locally contractible we have !#(S∗) = S[X].
This justifies viewing f# as a ”fiberwise homology” (askip).

Then a lemma was mentionned stating that under assumptions f#S is dualizable with dual f∗(S).

With this he defines the transfer map by some rather long composition which I am too lazy to copy.

The question is then whether this transfer map is functorial or not?

Theorem 25. (Ranzi, Volpe, Wolf) There is a contravariant functor of infinity categories, from the
category of locally compacth Hausdorff, locally contractible, with locally contractible proper maps as
morphisms to the category of spectra which sends a space to its homology S[x] and maps to their Becker
Gottlieb transfer.

The proof uses the following lemma

Lemma 2. For X a compact Hausdorff spaces, D(THH(Sh(X))) ≃ S[X] where D is the Spanier
Whithead dual.
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4.19 LEOR NEUHAUSER: Rigid Algebras are right adjoint to cospans

Motivation: rigid categories. Also Everything is infinity-categorical,

A symmetic monoidal category is a categorification of commutative monoids. Can also be done
with presentable stable categories. Archetypal examples have good properties, e.g: Dualizable and
compact objects are dualizable.

Definition 33. A sym monoidal category is rigid if the unit object is compact and the tensor product
is internally left adjoint.

Good ressource; Maxim Ramzi’s preprint.

So our notion of symmetric monoidal category is CAlg(Prst) (category of presentably stable cat-
egories). We can replace Prst by some othre category (of categories?), and we can also have rigid
noions in this generalized setting.

Recall the definition of the cospan category of a category C denoted by cospan(C). Via the co-
product in C this can be made into a symmetric monoidal category.

In any 2 category we can define a notion of left/right adjoint in perfect analogy with the case of
category of categories. (the definition using triangle identities not the other one).

In a sym mon an object is dualizable if there is a dual object X∨ such that there is an evaluation
map X ⊗ X∨ → ⊮ and a coevaluation map the other way, such that these two maps satisfy some
triangle identity thing.

This talk is about these notions in the cospan category.

In any symmetric monoidal 2-category there is a notion of commutative algebra, we call an alge-
bra A rigid if the unit is left adjoint and the multiplication map is left adjoint (in the category of
A-bimodules)

A commutative frobenius algebra is an augmented algebra such that ϵ ◦ µ exhibits A as self dual.
Defined another way a Frobenius algebra is an algebra and a coalgebra such that th multiplication
and co multiplication satisfy the Frobenius relations.

You can think of rigid algebras as a categorification of Frobenius algebras.

Now apparently every object in C is cannonically a rigid algebra in the category cospan(C) and
in fact all the rigid algebras are of this form.

At this point the talk became hard to follow. He was talking about ”6 functor formalism” whatever
that is.
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