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Introduction

The goal of this project is to make sense of the sentence “the derivatives of the identity functor for
spaces is the theory of spectral lie algebras”. This statement makes sense via the language of Good-
willie calculus, a topic in topology initiated by Goodwillie in his series of groundbreaking papers [11],
[12] and [13]. We will spend sections §1 and §2 building up the necessary material to understand the
definition of the derivative of the identity and then in section §3 we will cover a somewhat heteroge-
neous collection of topics which serve to make [6] approachable enough to understand the sentence
which motivated this project.

We assume that the reader is comfortable with basic topology at the level of Hatcher’s book on
the subject [14]. The other prerequisites for this project are all adjacent to algebraic topology, such
as categorical maturity and the language of simplicial sets. The former is acquired simply through
practice, and for the latter we recommend the book by Goerss and Jardine [10] on the subject. We
also assume that the reader is comfortable with accepting the result from [21] and [20], although the
formal prerequisites from these books is minimal. In particular all of the categorical notions we use
are ∞-categorical, and the reader should be willing to at least accept these on faith. It is however not
necessary to understand the details of how we obtain the result in the ∞-categorical setting.
In particular, whenever we call something a category, we mean an ∞-category, and more specifically,
we work with the model of quasi-categories.

Relative to ordinary calculus, our approach to Goodwillie calculus does like transfer maps and
goes the wrong way, starting with the definition of the Taylor tower and only then going on to the
define the derivative. In section §1 we construct the Taylor tower of a functor. In subsection §1.1 we
define an n-excisive functor, which will play the role analogous to that of polynomials of degree n in
ordinary calculus. Then in subsection §1.2 we prove the following theorem.

Theorem 0.0.1. (Theorem 6.1.1.10. in [21]) Let C be a category with finite colimits and a final object
and let D be a differentiable category. Then the natural inclusion functors Excn(C,D) → Fun(C,D)
admits a left adjoint which we denote by Pn. Further these functors are left exact (i.e. preserve finite
limits).

Which corresponds in ordinary calculus to the existence of degree n Taylor approximations. We
take a first step in defining the derivative from the Taylor tower in subsection §1.3, which is a basic
study of the difference between a degree n and (n − 1)-approximation of a functor, thus giving an
object corresponding to f (n)(0)

n! xn in ordinary calculus. The main result in our study is the following
theorem.

Theorem 0.0.2. (Theorem 6.1.2.4. in [21]) Let C be a category with finite colimits and a final object,
D a differentiable category. Then, for all n, we have a diagram in Fun(Fun∗(C,D),Fun∗(C,D)):

Pn Pn−1

Kn Rn

.

The functors Pn, Pn−1 are the n-excisive approximations of theorem 1.2.1 implicitly postcomposed with
the inclusions Excn(C,D)→ Fun(C,D), and Rn and Kn satisfy the following properties.

(i) For every reduced functor F : C → D, Kn(F ) carries every object of C to a final object of D.

(ii) For every reduced functor F : C → D we have that Rn(F ) is n-homogeneous.

(iii) The functor Rn is left exact.

(iv) If F : C → D is (n− 1)-excisive, then R(F ) carries every object of C to a final object of D.
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The above theorem is interesting in its own right because it implies that DnF = Fib(PnF →
Pn−1F ) is a loop space under some nice assumption. And any structure we can give the layers of the
Taylor tower can be used to study F . However, for the goals of this project, the main point of the
above theorem is the following corrolary which we also prove in subsection §1.3.

Corollary 0.0.3. (Corollary 6.1.2.9. in [21]) Let C be a category with finite colimits and a final
object, let D be a pointed differentiable category. Then composition by Ω∞ : Sp(D) → D induces for
any integer n an equivalence

Homogn(C,Sp(D))→ Homogn(C,D).

Indeed this result will be instrumental in the proof of the main theorem of subsection §2.2.

Theorem 0.0.4. (6.1.4.7. in [21] Let C be a pointed category with finite colimits and a final object,
let D be a pointed differentiable category. Then we have a fully faithfull embedding

cr(n) : Homogn(C,D)→ SymFunn(C,D).

The essential image of cr(n) is the full subcategory SymFunnlin(C,D) of those functors E : C(n) → D
whose underlying functor E : Cn → D is multilinear.

However before being able to study this theorem, we start section §2, whose end goal is to define
the derivative, by studying the basics of multivariable Goodwillie calculus in subsection §2.1. The
main output of this study is the following definition.

Definition 0.0.5. (Construction 6.1.3.20. in [21]) Let C be a category with finite colimits and a final
object, let D be a pointed category with finite limits, and F : C → D. We have a functor q : Cn → C
which maps an n-tuple to the coproduct of these objects. The functor crn := Red(F ◦ q) : Cn → D is
defined, this is what we call the nth-cross effect.

This then gives way to the proof of the above theorem in subsection §2.2. After which we provide
the final ingredient for the definition of the derivative in subsection §2.4. This final ingredient is the
following theorem from subsection §2.3.

Theorem 0.0.6. (Proposition 6.2.3.21. and Corollary 6.2.3.22. in [21]) Let {Ci}i∈I be a finite
collection of pointed differentiable category and let D be a differentiable category. Then the construction
f 7→ Ω∞

D ◦ f ◦
∏
i∈I Σ∞

Ci
defines an equivalence ϕ : Exc⋆(

∏
i∈I Sp(Ci), Sp(D))→ Exc⋆(

∏
i∈I Ci,D).

The proof of this theorem goes through a hands-on definition of the first derivative in subsubsec-
tion §2.3.1 and a more detailed study of stable categories in §2.3.2.

At this point, we can now understand half of the sentence “the derivatives of the identity functor
for spaces is the theory of spectral lie algebras” which guides this project. In section §3, although we
won’t fully elucidate the second half of the sentence, we discuss enough material for the interested
reader to finish deciphering the guiding light of the project by reading [6].
We start this section by studying (co)ends in subsection §3.1, a categorical tool which is used in to
define the bar construction for operads used by Ching to study the derivatives of the identity. We don’t
prove any specifically useful result in this section, but instead simply try to develop some intuition
for this construction. We then study bar constructions in subsection §3.2, once again with the goal of
developing intution more so than trying to prove any specific result. We study two different and rather
general bar constructions, before studying the specific case of differential graded algebras which serves
as the key inspiration for the bar construction for operads. Then in subsection §3.3 we give a brief
introduction to Koszul duality, which is used in Ching’s paper [6] to characterize the derivatives of
the identity as Koszul dual to the commutative operad in spectra, and thus in analogy to the classical
case, deserving of the name “spectral lie operad”. The study of Koszul duality is heavily dependent
on the bar construction we discussed in the previous section.
After these three, in some sens relaxed, subsections we move on to subsection §3.4, which is the final
part of this project, where we compute the derivatives of the identity. Our final result is the following,
which we prove almost in full.
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Theorem 0.0.7. (Corollary 14 in [3]) There is an equivalence of Σn-spectra

∂n(IdS∗) ≃ Map(Σ∞∆n,S).

Convention

We adopt the philosophy that, whenever possible, a diagram is worth a thousand words, even when it
might be quite intimidating. In order for this to be reasonable, we often omit naming all the arrows
appearing in a diagram, and let context assist in understanding. There are some naming conventions
we use at times to help with readability. The most important are that, if a map is obtained by univer-
sal property, and so is unique (up to contractible choice), we often denote it by !. Inclusions are often
denoted by ι, potentially with a subscript denoting the domain and projections are often denoted by
π, with a potential subscript used to denote the codomain. Diagonal morphisms, that is morphisms
X → X×n obtained by universal property using the identity, are denoted by ∆.

The set [n] is the set of positive integers {0, 1, ..., n}. We will sometimes view this as a finite poset,
as a 1-category or as an∞-category. We allow ourselves to do this without further comments at times.

Although this project sticks very close to the notation and language of Lurie’s books [20] and [21],
we have one major difference. For ease of reference we discuss this point in a remark
Remark 0.0.8. We call a functor F : A → B final if the natural map lim−→B

D → lim−→A
D ◦ F is an

equivalence, where D : B → C is a diagram. Dually, if precomposition by F preserves limits, we call
F initial. This is not the nomenclature Lurie uses, but instead the one advocated for example by the
nLab. But we still use the term cofinal for subcategories/subsimplicial sets such that every object in
the large category maps to an object of the subcategory. And similarly we will still call reasoning
using this strategy “cofinality arguments”.
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1 Constructing the Taylor tower

We start this project by exploring parts of chapter 6 of [21] in order to learn the basics of Goodwillie
calculus. The goal of functor calculus in general is to create tools inspired by classical calculus, in
Euclidean space or on manifolds, in the context of functors between categories. Goodwillie calculus
is one such example of a functor calculus, originally developped in the three foundational papers of
Goodwillie: [11], [12] and [13]. The analogy with ordinary calculus is explored in [2].

In this section specifically, we wish to construct something analogous to the Taylor series of ordinary
calculus inside of a functor category Fun(C,D). Unsuprisingly this is not done in absolute generality,
but instead with some assumptions on C and D. we will require that C admits all finite colimits and
a final object and that D is differentiable, whose definition is

Definition 1.0.1. (Definition 6.1.1.6. in [21]) A category D is called differentiable if:

(i) D admits all finite limits,

(ii) D admits sequential colimits, i.e. colimits for N(Z)-shaped diagrams.

(iii) The colimit functor lim−→Fun(N(Z),D)→ D is left exact, i.e preserves finite limits.

Key examples of differentiable categories are stable categories with countable coproducts, such as
the category of spectra (see example 6.1.1.7. in [21]) and compactly generated categories (see exam-
ple 6.1.1.9. in [21]), including key examples such as the category of spaces or of infinity categories.
For more about this important class of∞-categories, we invite the reader to consult section 5.5.7 of [20]

In order to construct something akin to a Taylor series, we need a notion of degree n polynomial
functor, and a canonical way to approximate a functor by a degree n-functor. We do the former
in subsection §1.1 and the latter in subsection §1.2. In this section we also assemble all of these
approximations into a tower which will be our “Taylor Series”. Then in subsection §1.3 we establish
a result comparing the degree n approximation with the degree n− 1 approximation.

1.1 Excisive Functors

An excisive functor should be imagined as the object analogous to polynomials, and an n-excisive will
be analogous to degree n-polynomials. Before defining these, we need a few definitions.

Definition 1.1.1. (Notation 6.1.1.1. in [21]) Given a (finite) set S, we have a 1-category P(S) of
subsets corresponding to the poset (2S ,⊂). We can see this as an ∞-category by taking the nerve.
We denote by P≤i(S) the full subcategory whose objects are the subset of cardinality less than or
equal to i. We define P>i(S) similarly.

Definition 1.1.2. (Definition 6.1.1.2. in [21]) For a category C, an n-cube in C is an N(P(S))-shaped
diagram in C, where S is a finite set of cardinality n. We may also call these S cubes. We call the
functor category Fun(N(P(S)), C) the category of n-cubes in C.

If we decompose S as T− ⊔T ⊔T+, we can obtain a T -cube from an S-cube X by mapping T0 ⊂ T
to X(T− ⊔ T0). The T -cubes obtained this way are called T -faces of X.
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To justify the nomenclature of cubes, it is instructive to observe what happens for [1] and [2]:

∅ {0} ∅ {0}

{1} {0, 1} {1} {0, 1}

{2} {0, 2}

{1, 2} {0, 1, 2}

.

Definition 1.1.3. (Definition 6.1.1.2. in [21]) An n-cube X : N(P([n]))→ C is called Cartesian if the
obvious map

X(∅)→ lim←−
∅̸=S⊂[n]

X(S)

is an equivallence.
We call an n-cube X : N(P([n]))→ C strongly coCartesian if it is a left Kan extension of its restriction
to N(P([n])≤1).

It is obvious how to define the dual notions of coCartesian and strongly cartesian, however as we
won’t be needing these notions, we won’t make them explicit. In several places in the literature, the
definition of coCartesian is instead phrased as requiring every “2-dimensional face of N(P([n])) to be
a cocartesian square, i.e. a pushout square”. To see (at least heuristically) that these two definitions
are equivalent use definition A.0.3 inductively on the cardinality of the vertices of N(P([n])). A more
precise (and slightly stronger) version of this equivalent definition of strongly coCartesian is given by
the following result.

Lemma 1.1.4. (Proposition 6.1.1.15. in [21]) Let C be a category with finite colimits and let X be
an n-cube. Then the following are equivalent:

(i) X is strongly coCartesian.

(ii) For every pair of finite sets T, T ′ ⊂ [n] the diagram

X(T ∩ T ′) X(T )

X(T ′) X(T ∪ T ′)

is a pushout.

(iii) For every T ⊂ [n] and every s ∈ [n]\T the following diagram

X(∅) X(T )

X({s}) X(T ∪ {s})

is a pushout.

We will not give a more detailed proof of this result than the heuristic presented above.

Now that we have these definitions we can finally define what it means for a functor to be n-excisive.

Definition 1.1.5. (Definition 6.1.1.3 in [21]) A functor F : C → D is said to be n-excisive if it carries
strongly coCartesian n-cubes to Cartesian n-cubes. These functors assemble into a full subcategory
of Fun(C,D) denoted by Excn(C,D).
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Once again it is instructive to study the cases n = 0, 1, we follow [21]. A 0-cube is simply a
morphism, any 0-cube is vacuously strongly coCartesian and clearly cartesian if and only if the cor-
responding morphism is a weak equivalence. So a 0-excisive functor F : C → D has to send every
morphism of C to a weak equivalence in D. In other words, a functor F is 0-excisive if and only if it
factors through the maximal subgroupoid of D. Notice that this means (if C is connected), that up to
weak equivalence a 0-excisive functor is constant, which is what we expect if it is indeed analogous to
degree 0-polynomials.
A 1-cube is just a commutative square, it is cartesian if this square is a pullback square, and it isn’t
hard to say that a 1-cube is strongly coCartesian if it is a pushout square, which is clear consequence of
the definition (A.0.3). So we see that a 1-excisive functor is a functor that sends pushouts to pullbacks.

We now state the following pair, which we combine for ease of reference, of technical results, though
only briefly discuss their proofs.

Proposition 1.1.6. (Proposition 6.1.1.13. and 6.1.1.13. in [21]) Let n be an integer and m ≤ n
a subset. If X : N(P([n])) → C is a strongly coCartesian n-cube, then every m face is also strongly
coCartesian.

Let n be an integer and T ⊂ [n] a subset. If every T -face of X : N(P([n])) → C is a Cartesian
T -cube, then X is a Cartesian n-cube.

For the first proposition, the first challenge is simply dissecting definition, which reduces the proof
to computing a certain colimit. This colimit can be computed by changing the diagram category to
an equivalent one and using that X is strongly coCartesian. The main idea of the proof is the change
of diagram category.
The second proposition is proven with a similar idea, the proof consists in computing a certain limit.
The key idea is again the change of diagram category, at which point the result follows clearly from
the assumptions.

Corollary 1.1.7. (Corollary 6.1.1.4. in [21]) Let F : C → D be a functor between ∞-categories.
Assume that C admits finite colimits and finite limits. If F is m-excisive then it is n-excisive for all
n ≥ m.

Proof. let F : C → D be an m-excisive functor, which means it sends strongly coCartesian m-cubes
to Cartesian m-cubes. Now take a strongly coCartesian n-cube X : N(P([n])) → C, for some n ≥ m.
By the first of the above propositions, every m-face must be strongly coCartesian as well, and so F
sends each m-face to a Cartesian m-face. In particular, every m-face of FX is Cartesian, thus by the
second of the above propositions, FX is Cartesian.
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1.2 Degree n approximation

We prove the following theorem, which in some sense makes Goodwillie calculus possible.

Theorem 1.2.1. (Theorem 6.1.1.10. in [21]) Let C be a category with finite colimits and a final object
and let D be a differentiable category. Then the natural inclusion functors Excn(C,D) → Fun(C,D)
admits a left adjoint which we denote by Pn. Further these functors are left exact (i.e. preserve finite
limits).

We will in fact construct the Pn explicitly, and then prove that these functors have all the desired
properties. The construction of Pn, will be done in three steps the first of which is defining a functor
C ×N Fini → C where Fini is the category of finite sets and injections.

Definition 1.2.2. (Construction 6.1.1.8. in [21]) Let C be a category with finite colimits and a final
object. We consider functors F ∈ Fun(N(Fini), C) satisfying the following two properties:

(i) F maps sets of cardinality 1 to the final object of C,

(ii) For every finite set S, F (S) is a colimit of the diagram F |N(P≤1(S)).

Notice that (ii) is exactly equivalent to requiring that F is a left Kan extension (A.0.3) of its restriction
to N(P≤1(S)). We will now use proposition A.0.5 in order to obtain a functor C ×N(Fini)→ C, where
we will denote the image of (X,S) by CS(X).
Applied directly, taking N(Fini

≤1) as full subcategory of N(Fini), proposition A.0.5 yields a trivial
fibration K → K′ from the category of functors N(Fini) → C which are left Kan extensions of their
restriction to N(Fini

≤1) (i.e. satisfying (ii)) to the category of functors F : N(Fini
≤1) → C such that

for every finite S set the induced diagram N(Fini
≤1)/S admits a colimit. As the diagram category

is skeletally finite we see that, because C admits finite colimits, the condition is vacuously true, so
we get a a trivial fibration K → Fun(Fini

≤1, C). Trivial fibrations admit sections, thus giving us a
map s : Fun(Fini

≤1, C) → K and now we may forcefully enforce condition (ii). We can restrict s to
those functors mapping sets of cardinality 1 to the terminal object of C. Because s is a section of the
restriction functor, we see that s of such a functor must also satisfy property (ii). Finally, observe
that if we restrict Fun(Fini

≤1, C) to those functors satisfying (ii), then this category is equivalent to C
as these functors are uniquely determined by where they send the empty set.
Thus we have a map s| : C → Fun(Fini, C), such that the image of any object is a left Kan extension
of its restriction to Fini

≤1, which by adjunction gives us the desired functor C ×N(Fini)→ C.

By construction the values CS(X) are forced when |S| ∈ {0, 1}, thus we already know that
C∅(X) = X and C{∗}(X) = ∗, where ∗ is some final object of C. Now because C•(X) is a left
Kan extension of its restriction to sets of cardinality less than or equal to 1, we can understand CS(X)
in general as a colimit involving one copy of X and many copies of ∗. In particular for S of cardinality
2, it isn’t hard to see that CS(X) is equivalent to ΣX.

From the definition and the fact that colimits commute with colimits, we can see that CS(−)
preserves colimits and final objects.

Now we can move on to the second step in our construction.

Definition 1.2.3. (Construction 6.1.1.22. in [20]) Let C be a category which admits finite colimits
and a terminal object, let D be a category which admits finite limits and let F : C → D be a functor
between these categories. For each integer n, we define Tn(F ) : C → D by

Tn(F )(X) := lim←−
∅≠S⊂[n]

F (CS(X)).

We have a natural map F (X) = F (C∅(X))→ Tn(F )(X) by the universal property, and these assemble
into a natural transformation θF : F → TnF . Furthermore, it isn’t hard to see that this natural
transformation depends functorially on F .

We will, in time, need the following technical lemma, which we state without detailed proof.
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Lemma 1.2.4. (Lemma 6.1.1.26. in [21]) Let C be an ∞-category which admits finite colimits and a
final object, D a category with finite limits and F : C → D be a functor. Let X be a strongly coCartesian
n-cube in C, the canonical map of n-cubes θF : F (X)→ TnF (X) factors through a Cartesian cube of
D.

A strongly coCatersian cube X, induces a whole family of cubes XI : I ′ 7→ X(I ∪ I ′). This means
we now have a cube at every vertex of our original cube. These “vertex”-cubes XI are the ones we use
to define Y , inspired by how the definition of Tn maps the cubes C•(X) to an object of C, we define

Y (I) := lim←−
∅≠S⊂[n]

F (XI)(S).

In essence we have done to every “vertex”-cubes what Tn does to the cubes C•(X), and what this
construction gives is ann approximation to what F (∅) ought to be if we are hoping for a Cartesian
cube. We could have tried to apply this idea directly to the cube F (X), but this turns out not to
have enough leeway for our purposes. One may observe that the map θF : F (X)→ Tn(F (X)) factors
through Y , so all that remains to see is that Y is Cartesian. For this, because limits commute with
limits, so Cartesian cubes are closed under limits, it suffices to show that the cubes I 7→ XI(S) are
Cartesian for each non empty S. To prove this, we use the technical lemmas of section §1.1.6 and
study the S-faces of these cubes.

Finally, from here we can define the functors of interest to us.

Definition 1.2.5. (Construction 6.1.1.27.) Let C be a category with finite colimits and a final object,
D be a differentiable category and F : C → D be a functor between these categories. For each integer
n, denote by Pn the colimit of

F
θF−→ TnF

θTnF−−−→ TnTnF
θTnTnF−−−−−→ TnTnTnF → · · · .

We of course have a natural transformation ϕ : F → PnF , functorial in F .

In due time, we will call this the n-excisive approximation of F , though for now we don’t know
many (if any) properties of Pn. Our goal main for the remainder of this section is to show that the
Pn we constructed satisfies all the properties of theorem 1.2.1. First, in order to perhaps gain some
intuition for this result we state the following simple computational result, without proof as the result
is more or less immediate.

Proposition 1.2.6. (Example 6.1.1.23. and 6.1.1.28. in [21]) Let F : C → D be a functor from a
category with small colimits and a final object to a differentiable category. Then P0F is the constant
functor with value F (∗) where ∗ is a final object of C.
Further if F preserves final objects, we have that P1F ≃ lim−→m≥0 Ωm

D ◦ F ◦ Σm
C .

The fact that these functors preserve finite limits is the easy part of theorem 1.2.1.

Lemma 1.2.7. (Remark 6.1.1.24. and 6.1.1.29. of [21]) The functors Pn constructed above, viewed
as endofunctors of Fun(C,D), are left exact.

Proof. We first notice that as TnF is defined as a limit, and as limits commute with each other by
lemma A.0.6, it isn’t hard to see that

lim←−
i∈I

TnFi ≃ lim←−
i∈I

lim←−
∅≠S⊂[n]

Fi(CS(−)) ≃ lim←−
∅̸=S⊂[n]

lim←−
i∈I

Fi(CS(−)) ≃ Tn lim←−
i∈I

Fi.

Now to deduce from this that Pn preserves finite limits, we use that Pn is a sequential colimit of
functors which preserve limits. By assumption, sequential colimits in D are left exact, and so it
is clear that Pn preserves finite limits pointwise, which is enough for Pn to preserve finite limits of
functors.
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We will in time prove that Pn preserves all colimits, as we will prove that they are left adjoint,
however we do need to show by hand that Pn preserves some colimits in order to prove that Pn is a left
adjoint. In both the above result and the following, it may seem redundant to specify that we view
Pn as an endofunctor of Fun(C,D), and strictly speaking this information does indeed not contribute
anything. However, it helps with clearing up ideas, as in time we see Pn as a functor whose codomain
is those functors which are n-excisive.

Lemma 1.2.8. (Remark 6.1.1.31. in [21]) The functors Pn, viewed as endofunctors of Fun(C,D),
preserve sequential colimits, i.e. colimits of N(Z) shaped diagrams.

Proof. Sequential colimits in D commute with finite limits by assumption, so because Tn is constructed
by a finite limit we see that

lim−→
N(Z)

TnFn ≃ Tn lim−→
N(Z)

Fn.

As Pn is a sequential colimit, and sequential colimits commute with each other by lemma A.0.6, we
get the desired result from the result for Tn.

Another relatively simple result is the following. Heuristically, this result gives us a class of
functors such that composition by these is to Pn what multiplication by scalars is to ordinary Taylor
approximation.

Lemma 1.2.9. (Remark 6.1.1.30. and 6.1.1.32. of [21]) Let C be a category with finite colimits and a
final object, D a differentiable category, a functor F : C → D, C′ another category with finite colimits
and a final object and a functor G : C′ → C which preserves pushouts and a final object. Then we have

Pn(F ◦G) ≃ Pn(F ) ◦G.

Similarly, if D′ is another differentiable category and H : D → D′ is a functor which preserves
finite limits and sequential colimits, then we have

Pn(H ◦ F ) ≃ H ◦ Pn(F ).

Proof. Using the same notation as in the statement of the result, we first prove that Pn(F ◦ G) ≃
Pn(F ) ◦ G. Because C∅(X) ≃ X, it is obvious that G commutes with C∅. Because G preserves final
objects, the fact that C{s}(X) = ∗, where ∗ ∈ C is some final object, we can observe that G commutes
with C{s}. Now because C•(X) is a left Kan-extension of its restriction to sets of cardinality at most
one, we have (by induction using the shape of the colimit diagram) from the fact that G preserves
pushouts that

G ◦ CS(X) ≃ CS(GX).

From this the desired result is obvious, as G becomes “part of the argument” and is not affected by
our various constructions.

The fact that Pn(H ◦ F ) ≃ H ◦ Pn(F ) is immediate, as the assumptions on H correspond exactly
to the limits used to construct Pn.

Remark 1.2.10. Pursuing the analogy with ordinary calculus, we see that functors satisfying the
assumptions of the above result can be considered as right (resp. left) scalars. Specializing to a
specific example, a natural question becomes what are the left/right/two-sided scalars with respect to
Goodwillie calculus of endofunctors of Top. For two sided scalars, we see that the two sided scalars
are determined by where they send S0. Indeed, preservation of pushouts and final object means
E(Sn) = ΣnE(S0), and up to homootopy everything is a CW-complex, i.e. a sequential colimit of
n-skeleta, which are iterated pushouts, and so E(S0) determines the (weak) homotopy type of E(X).
If a functor is just a right scalar or just a left scalar, we weren’t able to find any interesting unified
description.

We are almost to ready to prove theorem 1.2.1, we just need to prove the next two lemmas. The
first of which proves that the codomain of Pn can be chosen to be n-excisive functors.
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Lemma 1.2.11. (Lemma 6.1.1.33. in [21]) Let C be a category with finite colimits and a final object,
D be a differentiable category and F : C → D. Then the functor PnF : C → D is n-excisive.

Proof. Let X : N(P([n])) → C be a strongly coCartesian cube, we want to show that PnF (X) is a
Cartesian cube of D. We can write PnF (X) as the colimit of the following sequence of cubes:

F (X)→ TnF (X)→ TnTnF (X)→ · · · .

Now by lemma 1.2.4, we can add Cartesian cubes Yi to the diagram, to produce the following com-
mutative diagram:

F (X) TnF (X) TnTnF (X) · · ·

Y0 Y1 Y2

.

Next using proposition A.0.7 we see that the colimit of the above diagram can be computed both as the
sequential colimit of the top row (yielding Pn(X)) or of the subdiagram of Yi. By assumption, each Yi
is cartesian and sequential colimits in the codomain category preserve finite limits, so we may deduce
that the sequential colimit is also Cartesian. This proves the claim that Pn(X) is Cartesian.

The next lemma goes towards showing that Pn is a localization functor (which is the method we
will use to show that it is a left adjoint).

Lemma 1.2.12. (Lemma 6.1.1.34. and 6.1.1.35. in [21]) Let C be a category with finite colimits
and a final object, D be a differentiable category and F : C → D. Let ϕ : F → PnF be the natural
transformation, then Pn(ϕ) : Pn(F )→ Pn(Pn(F )) is an equivalence.

Proof. We first prove that the canonical map θ : F → TnF is sent to an equivalence by Pn. Because
Pn is left exact by lemma 1.2.7 we have that the natural map

Pn(TnF ) = Pn( lim←−
∅≠S⊂[n]

F ◦ CS)→ lim←−
∅≠S⊂[n]

Pn(F ◦ CS)

is an equivalence. Because CS preserves pushouts and final objects, we have by lemma 1.2.9
Pn(F ◦ CS) ≃ Pn(F ) ◦ CS . And so, combining these two equivalences we get an equivalence

Pn(TnF )→ lim←−
∅≠S⊂[n]

Pn(F ) ◦ CS .

And so showing that Pn(θ) : PnF → Pn(TnF ) is an equivalence can be done by showing that PnF →
lim←−∅≠S⊂[n] Pn(F ) ◦CS is an equivalence. Now we have proven in lemma 1.2.11 that PnF is n-excisive,
which means that PnF maps the strongly coCartesian n-cube S 7→ CS(X), where S runs over the
subsets of [n], to a Cartesian n-cube. The statement that S 7→ PnF (CS(X)) is a Cartesian cube
is exactly the statement we are trying to prove, hence we have that Pn(θ) : PnF → Pn(TnF ) is an
equivalence.
By composing equivalences we get that the natural map Pn(θk) : PnF → Pn(T knF ) is an equivalence.
Taking the sequential colimit of these maps we get that PnF → lim−→N(Z) Pn(T knF ) is an equivalence.
But Pn preserves sequential colimits by lemma 1.2.8, in such a way that we get an equivalence PnF →
PnPnF . Thus concluding the proof.

And we are now ready to prove theorem 1.2.1, which is what all the above constructions and
lemmas were leading up to.

Proof. All the lemmas of this section almost prove the desired result. In particular we have a left exact
functor Pn : Fun(C,D) → Excn(C,D), which is equipped with a natural map ϕ : IdFun(C,D) → Pn,
all that remains to show is that this functor is a left adjoint to the inclusion. We will do this by
using proposition A.0.9, which reduces our work to showing that Pn is essentially surjective, and that
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Pn(ϕF ) and ϕPnF are equivalences for each F ∈ Fun(C,D).
To show essential surjectivity, let F : C → D be an n-excisive functor. This in particular means that
F sends, for any X ∈ C the strongly coCartesian n-cube C•(X) : S 7→ CS(X), where S runs over
the subsets of [n], to a Cartesian cube. The statement that FC•(X) is a Cartesian cube says exactly
that the natural map θF : F → TnF is an equivalence. As a sequential colimit of equivalences is an
equivalence we get that ϕF : F → PnF is an equivalence for any n-excisive functor F . This shows
that Pn is essentially surjective. By lemma 1.2.11 it also shows that ϕPnF is an equivalence, and we
already know that Pn(ϕF ) is an equivalence by lemma 1.2.12, thus concluding the proof.

From here on out, whenever we write PnF , we implicitly mean that the domain of F admits finite
colimits and a final object, whereas the codomain category is a differentiable category.

15



1.3 The difference between successive approximation

In the previous section we constructed functors Pn : Fun(C,D)→ Excn(C,D) which are left adjoint to
the inclusion. Combining the adjunction isomorphism with lemma 1.1.7, we can assemble the PmF
into a tower

· · · → P3F → P2F → P1F → P0F

which can be intuitively understood as the Taylor tower of F . In classical calculus, it is interesting to
subtract the degree n−1 approximation from the degree n approximation, yielding a monomial which
is the homogeneous degree n part of our original function. In this categorical setting this is done by
taking the fiber, which we call DnF , of PnF → Pn−1F . We state here the following definitions which
give us a way to speak of homogeneous functors, further expanding our dictionary between classical
and Goodwillie calculus.

Definition 1.3.1. (Def 6.1.2.1. in [21]) Let C be a category that admits finite colimits and has a
final object, D be a differentiable category and F : C → D a functor. Then by theorem 1.2.1, we have
functors PnF . We call F n-reduced if Pn−1F sends any object of C to a final object of D. And we call
F n-homogeneous if it is n-reduced and n-excisive.
We assemble the 1-reduced functors into a full subcategory of the functor category denoted by
Fun∗(C,D) and similarly for the n-homogeneous functors, which we denote by Homogn(C,D).

Notice that by the computation that P0F is the constant functor with value F (∗) for some final
object ∗ ∈ C, we see that being 1-reduced can be restated as saying that F preserves the final object.

Understanding this DnF usually requires specifying the domain or codomain, if not the functor F .
However, we have the following result, which says that if F is 1-reduced then DnF can be delooped
once, or in other words that the Taylor tower of a functor is a tower of principal fibrations.

Theorem 1.3.2. (Theorem 6.1.2.4. in [21]) Let C be a category with finite colimits and a final object,
D a differentiable category. Then, for all n, we have a diagram in Fun(Fun∗(C,D),Fun∗(C,D)):

Pn Pn−1

Kn Rn

.

The functors Pn, Pn−1 are the n-excisive approximations of theorem 1.2.1 implicitly postcomposed with
the inclusions Excn(C,D)→ Fun(C,D), and Rn and Kn satisfy the following properties.

(i) For every reduced functor F : C → D, Kn(F ) carries every object of C to a final object of D.

(ii) For every reduced functor F : C → D we have that Rn(F ) is n-homogeneous.

(iii) The functor Rn is left exact.

(iv) If F : C → D is (n− 1)-excisive, then R(F ) carries every object of C to a final object of D.

To deduce from this the result the fact that for reduced F we have that Dn can be delooped follows
from point (i), saying that in this case Pn → Pn−1 → Rn is a fibration, and so by looking at the Puppe
fiber sequence we have that the fiber of Pn → Pn−1 is ΩRn.

Beyond the philosophical interest in this result, we will prove the above result in order to get the
following corollary, which will be useful in proving the main result of §2.2.

Corollary 1.3.3. (Corollary 6.1.2.9. in [21]) Let C be a category with finite colimits and a final
object, let D be a pointed differentiable category. Then composition by Ω∞ : Sp(D) → D induces for
any integer n an equivalence

Homogn(C,Sp(D))→ Homogn(C,D).
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In order to prove theorem 1.3.2, we will need a more general and more potent version of construction
1.2.2. Fix two integers n and m. Consider the full subcategory P = P>0([n]) of subsets of [n] which
aren’t empty. We can define a functor

χm : N(Pm)× Fun∗(C,D)→ Fun∗(C,D),

which maps a functor F and an m-tuple (S1, ..., Sm) to F ◦CS1 ◦· · ·◦CSm , where CSi is the construction
of definition 1.2.2. We use these to define, for each I ⊂ Pm, the functor UI : Fun∗(C,D)→ Fun∗(C,D),
which map a functor F to

lim←−
(S1,...,Sm)∈I

χm|N(I)×Fun∗(C,D)(S1, ..., Sm, F ).

We will use the above construction, to construct a diagram in Fun(Fun∗(C,D),Fun∗(C,D)), which
we’ll use to pointwise create the diagram of interest to us. Before doing this, we make three prelim-
inary remarks. First, fix I ⊂ Pm, I ′ ⊂ Pn, and notice that we can naturally view I × I ′ as a subset
of Pm+n. Using that the nerve preserves products and that limits commute with each other by (the
dual of) lemma A.0.6, one can readily deduce that UI×I′ ≃ UI′ ◦ UI . Second, the functors UI are
all left exact by the dual of lemma A.0.6, so that the diagram will in fact be a diagram of left exact
endofunctors of Fun∗(C,D). Third, notice that the association I 7→ UI , can naturally be extended to
a contravariant functor Pm → Fun(Fun∗(C,D),Fun∗(C,D)).

Now, we need to find an interesting diagram in Pm, however disappointingly, the interest of the
diagram will only become clear once we successfully use it to prove theorem 1.3.2. For this, let B ⊂ P
consists of those subsets of [n] which have non-empty intersection with [n − 1]. Also, let Am ⊂ Pm
consist of those tuples, such that at least one subset contains n. We have the following commutative
diagram of subsets of Pm+1:

Pm+1 Bm × P Bm+1

Am+1 Am+1 ∩ (Bm × P) Am+1 ∩ (Bm+1)

Am × P (Am ∩Bm)× P

.

By the preceeding discussion, we can turn this into a corresponding diagram of left exact endofunctors
of Fun∗(C,D), which for future reference we call τm:

UPm+1 UBm×P UBm+1

UAm+1 UAm+1∩(Bm×P) UAm+1∩(Bm+1)

UAm×P U(Am∩Bm)×P

.

We now prove two lemmas to help us understand the above diagram, and with those in hand we will
move on to the proof of theorem 1.3.2.

Lemma 1.3.4. (Lemma 6.1.2.13. in [21]) For each m ≥ 0, the functors UAm takes every F ∈
Fun∗(C,D) to a final object of the functor category. In particular, UAm is a final object in the category
of endofunctors of Fun∗(C,D).

Proof. The goal is to show that for each reduced functor F : C → D, and for every object X ∈ Ob(C),
the limit lim←−(S1,...,Sm)∈Am

(F ◦ CS1 ◦ · · · ◦ CSm) maps X to a final object. We will do this by finding a
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different diagram over which to compute this limit. Let A′
m = Pm\Bm, which naturally includes into

Am. Notice that an m-tuple in A′
m must have at least one, say Si term which is the singleton {n},

which by definition of CSi and reducedness of F implies that the over A′
m the limit of interest is as

desired. So it suffices to show that the map N(A′
m)→ N(Am) is initial.

By theorem A.0.10, it will suffice to show, for each (S1, ..., Sm) ∈ Am, the nerve of the following
category is contractible:

W = {(S′
1, ..., S

′
m) ∈ A′

m|S′
i ⊂ Si, ∀1 ≤ i ≤ m}.

Let I ⊂ {1, ..., n} be the subset of indices i such that n ∈ Si, which is non empty by definition of
Am. Now for each ∅ ≠ J ⊂ I, let WJ denote the subcategory of W consisting of tuples for which
S′
j = {n},∀j ∈ J .Now it is quite clear that N(WJ) is contractible for each J , as each WJ has a

terminal object given by (S′
1, ..., S

′
m) with S′

i = {n} if i ∈ J and S′
i = Si otherwise. We claim that this

implies that W has contractible nerve.
For this, observe that N(W ) is the homotopy colimit of the contractible N(WJ). In general, a homo-
topy colimit of contractible spaces isn’t contractible, however here the diagram category is contractible.
This allows us to conclude by corollary 29.2 of [5].

Lemma 1.3.5. (Lemma 6.1.2.14. in [21]) The maps UAm+1 → UAm×P and UAm+1∩(Bm×P) →
U(Am∩Bm)×P are natural equivalences.

Proof. We will only prove the result for the map UAm+1∩(Bm×P) → U(Am∩Bm)×P , the case of the other
map being wholly similar and done in [21]. The only idea is to use the dual of proposition A.0.8
and the decomposition of N(Am+1) as N(Am × P) ∪ N(Bm × A1). Indeed, applying the dual of
proposition A.0.8, to the diagram defining UAm+1∩(Bm×P) with the decomposition just described, we
get the following pullback square

UAm+1∩(Bm×P) U(Bm×A1)∩(Bm×P)

U(Am×P)∩(Bm×P) U((Bm∩Am)×A1)∩(Bm×P)

.

Now, using (A×B)∩ (C ×D) = (A∩C)× (B ∩D) and the formula UI×I′ ≃ UI′ ◦UI which has been
discussed previously, it is easy to see that this diagram is equivalent to:

UAm+1∩(Bm×P) UA1 ◦ UBm

U((Am∩Bm)×P) UA1 ◦ UBm∩Am

.

Now, by the previous lemma, the two functors on the right map every functor a final object, thus are
themselves final object in the appropriate category. In particular the right-vertical map is an equiv-
alence. And because equivalences are stable under pullback, the left vertical map is an equivalence,
and this what we wanted to show.

We are now ready to prove theorem 1.3.2

Proof. We first recall to the reader that when we write τm, we mean the diagram defined above. We
define another diagram, σm, also in the category of endofunctors of Fun∗(C,D):

UPm UBm

UAm UBm∩Am

.

18



Noticing that the functor Tn which we constructed in the previous section can be described as UP .
Using the second of the above two lemmas and the formula UI×I′ ≃ UI′ ◦ UI , we can identify the
diagram Tnσm with

UPm+1 UBm×P

UAm+1 UAm+1∩(Bm×P)

.

Referring to τm, we see we have a natural transformation αm : Tn(σm) → σm+1, and we, by con-
struction of Tn, have a canonical map σm → Tn(σm). We can stick these transformations together, to
obtain

σ0 → Tn(σ0)→ σ1 → Tn(σ1)→ · · · .
Taking the colimit of the above diagram, which exists because sequential colimits exist in D by
assumption, gives us another diagram, which we will call σ∞, which will turn out to be the desired
diagram. To fix notation, explicitly write σ∞ as

P P ′

K R

.

By the formula for UI×I′ , we can identify UPm ≃ Tmn , which immediately implies that P is Pn.
Next, we need to understand UB, which is done using the evident inclusion P([n− 1])→ B. Because
this map clearly preserves supremums, we have that it must be a left adjoint by the adjoint functor
theorem for posets, in particular it is an initial map by corollary 7.2.3.7. of [22]. Thus UB ≃ UP([n−1]),
which we already know to be equivalent to Tn−1, and so we may repeat the same reasoning used to
identify P , to see that P ′ ≃ Pn−1.
The functor K is the colimit of the functors UAm , which all map every reduced functor to a functor
which maps everything to a final object by the first of the above two lemmas, so the same is true of
K.
Now, we show that R preserves finite limits, i.e. is left exact. Because limits commute with limits by
the dual of lemma A.0.6, and because UI is defined via a limit (and precomposition, which preserves
limits), we may deduce that UI preserves limits. Now because in D sequential colimits commute
with finite limits, this implies that R preserves finite limits, as a sequential colimit of functors which
preserve limits.
We now show that σ∞ is a pullback square. Again, because in D sequential colimits preserve finite
limits, it will suffice to show that each σm is a pullback, which follow from proposition A.0.8 using
that N(Pm) = N(Bm) ∪N(Am), with intersection N(Bm ∩Am).
We now prove that if F is (n − 1)-excisive in addition to being reduced, we have that R(F ) is a
final object of Fun∗(C,D). Because R is the colimit of UBm∩Am , it will suffice to show that the claim
holds for each of these. The subcategory Bm ∩Am can be seen to be in bijection with P>0([n− 1])×
P>0({1, ...,m}), by mapping an m-tuple (S1, ..., Sm) in the intersection to

((S1 ∩ [n− 1], ..., Sm ∩ n− 1), {i|n ∈ Si}).

Using this, we can describe UI , as the limit of a functor G : N(P>0([n− 1]))m×N(P>0({1, ...,m}))→
Fun∗(C,D), which by commutativity of limits amongst themselves (i.e. by the dual of A.0.6), means
we can compute UBm∩Am as the following iterated limit:

lim←−
∅≠T⊂{1,...,m}

lim←−
N(P>0([n−1]))m

G|N(P>0([n−1]))m×{T}.

As a limit of final objects is final, it suffices to show that lim←−N(P>0([n−1]))m G|N(P>0([n−1]))m×{T} is a
final object. For simplicity, write GT := G|N(P>0([n−1]))m×{T}. Making what we want to compute
slightly more explicit, we have

lim←−
(S1,...,Sm)∈N(P>0([n−1]))m

GT (F ) = lim←−
(S1,...,Sm)∈N(P>0([n−1]))m

F ◦ CS′
1
◦ · · ·CS′

m
,

19



where S′
i = Si when i /∈ T and S′

i = Si ∪ {n} when i ∈ T . Now we may view this limit, as an
interation of m-limits, each of which is an (n−1)-cube, which is strongly coCartesian, so that we may
compute the above expression as F ◦CS1 ◦ · · · ◦CSm , with Si the empty set if i /∈ t and {n} otherwise.
Recalling that C{n} maps every object to a terminal object, that C∅ is the identity, and using that T is
non-empty, we see that the composition CS1 ◦· · ·◦CSm maps every object to a final object independent
of T . Because F is reduced, this shows that the above limit is indeed a functor which is constantly a
final object. Which proves that R(F ) is a final functor, whenever F is (n− 1)-excisive in addition to
being reduced.
The final thing to check is that R(F ) is always n-homogeneous. Because Pn is left exact and a left
adjoint so preserves all colimits, we have by construction that Pn−1R(F ) ≃ R(Pn−1F ), as Pn.1(F ) is
(n − 1)-excisive by construction, by what we just proved we have that R(Pn−1F ) is a final functor,
in particular R(F ) is n-reduced. For n-excisiveness, let X be a strongly coCartesian n-cube in C,
we want to show that R(F )(X) is Cartesian. By definition of R, we can compute this cube as the
following colimit

UB0∩A0(F )(X)→ Tn(UB0∩A0(F ))(X)→ UB1∩A1(F )(X)→ Tn(UB1∩A1(F ))(X)→ · · · .

Now by lemma 1.2.4, we can factor the maps UBm∩Am(F )(X)→ Tn(UBm∩Am(F ))(X) through Carte-
sian squares, and now by lemma A.0.7, we obtain that the above colimit is Cartesian. This is what
we wanted to show, thus concluding the proof of this result.

Now that we have completed this proof, we will deduce a series of consequences of this result,
culminating with corollary 1.3.3. The first of these result is interesting enough to warrant the title of
theorem, rather than just corollary. In order to state this result, recall that Λ2

2 ⊂ ∆2 is the∞-category
analogue to the diagram category • → • ← • .

Theorem 1.3.6. (Theorem 6.1.2.5. in [21]) Let C be a category with finite colimits and a final object,
let D be a differentiable category and let n ≥ 1. Let E ⊂ Fun(Λ2

2,Fun∗(C,D)) be the full subcategory
spanned by those diagrams E → H ← H0, where E is reduced and (n−1)-excisive, H is n-homogeneous
and H0 is a final object in the functor category.
Then, the pullback map lim←− : Fun(Λ2

2,Fun∗(C,D))→ Fun∗(C,D) induces an equivalence E → Excn∗ (C,D).

To prove the above result, we will need the following technical result, which we include without
proof. One can consider this result as a strengthening of Fubini thanks to the extra assumptions.

Lemma 1.3.7. (6.1.2.6. in [21]) Let C be a category with finite limits. Suppose we are given a
diagram

X00 X01 X02

X10 X11 X12

X20 X21 X22

,

where the maps whose domain is top right or bottom left object are equivalences. Then, denoting by
Xh
i the fiber product Xi0 ×Xi1 Xi2 and by Xv

i the fiber product X0i ×X1i X2i. Then the diagrams

Xh
0 → Xh

1 ← Xh
2

and
Xv

0 → Xv
1 ← Xv

2

are pointwise equivalent. Moreover, the equivalence can be chosen to be functorial with respect to the
diagram.

With this in hand, we move on to the proof of the statement.
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Proof. Because n-excisiveness and reducedness are stable under limits, it is clear that we have a map
ϕ : E → Excn∗ (C,D), given by taking fiber products. A map ψ : Excn∗ (C,D) → E the other way is
provided by theorem 1.3.2, by mapping a functor F to Pn−1(F ) → R(F ) ← K(F ). The theorem
providing the map ψ also shows that ϕ ◦ ψ is equivalent to the identity. So all that remains to show
is that the opposite composition is also the identity, which we do by using the above lemma.
Consider E → H ← H0, with E (n− 1)-excisive, H n-homogeneous and H0 carrying every object of
C to a final object. Denote the fiber product of this diagram by F . We want to somehow create a
three by three grid as in the statement of the previous lemma, such that taking fiber products in one
direction yields E → H ← H0 and in the other direction we get Pn−1(F )→ R(F )← K(F ).
For this, consider the following diagram

Pn−1(E) Pn−1(H) Pn−1(H0)

R(E) R(H) R(H0)

K(E) K(H) K(H0)

.

The entire bottom row consists of functors mapping every object to a final object, by theorem 1.3.2.
By left exactness of Pn−1 and R, we get that Pn−1(H0) and R(H0), these functors also map every
object to a final object. Because H is n-homogeneous, we have by definition that Pn−1(H) maps every
object to a final object. And finally, for R(E) every object is sent to a final object by theorem 1.3.2. So
the assumptions of the lemma hold, thus all that remains is to understand the vertical and horizontal
fiber products.
Taking horizontal fiber products, the bottom evidently becomes a functor mapping every object to a
final object, which can alternatively be described as K(F ). The middle row and top row are sent to
R(F ) and Pn−1(F ) by let-exactness of R and Pn−1. In total, taking fiber products in the horizontal
direction gives us Pn−1(F )→ R(F )← K(F ).
Now in the vertical direction, by theorem 1.3.2, we get the diagram Pn(E)→ Pn(H)← Pn(H0), which
since these are all n-excisive functors, is equivalent to E → H ← H0. This completes the proof by the
above lemma.

Now the above leads to a whole slew of corollaries, which we here inspect. First, notice that the
pullback of a diagram E → H ← H0 as above, is n-homogeneous if and only if E is a final object.
This follows from left exactness of Pn−1. Thus the above result specializes to the following.

Corollary 1.3.8. (Corollary 6.1.2.7. in [21]) Let C be a category with finite colimits and a final object,
let D be a differentiable category and let n ≥ 1. Let E0 ⊂ Fun(Λ2

2,Fun∗(C,D)) be the full subcategory
spanned by those diagrams E → H ← H0, where E is a final object in the functor category, H is
n-homogeneous and H0 is a final object in the functor category.
Then, the pullback map lim←− : Fun(Λ2

2,Fun∗(C,D))→ Fun∗(C,D) induces an equivalence E0 → Homogn(C,D).

We specialize this result even further by considering the case where D is pointed, i.e. the final
objects are also initial. In this case, The category E0 can be identified with Homogn(C,D), by sending
a diagram E → H ← H0 as in the statement of the previous result to H. Formally, this identification
is given by restricting along the inclusion as the middle vertex • → (• → • ← •), which can be
observed to be a trivial Kan fibration between the desired categories via lemma A.0.5. Under this
identification, it is clear that the map E0 → Homogn(C,D) corresponds to the loop space functor
Ω : Homogn(C,D)→ Homogn(C,D). Further, the statement that the functor of the previous result is
an equivalence becomes the following, quite amazing, statement.

Corollary 1.3.9. (Corollary 6.1.2.8. in [21]) Let C be a category with finite colimits and a final object,
let D be a pointed differentiable category and let n ≥ 1. Then the infinity category Homogn(C,D) is
stable.
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From this, we wish to deduce the desired lemma 1.3.3. Recall that this means we want to show
that the map Ω∞

∗ : Homogn(C,Sp(D)) → Homogn(C,D) is an equivalence. A priori the codomain of
this map is simply Fun(C,D), in order to corestrict appropriately, recall that Ω∞ is exact, so commutes
with Pn by lemma 1.2.9, in particular n-homogeneity is preserved by Ω∞. In fact, more generally,
evaluation eK : Sp(C) → C at any finite space K preserves n-homogeneity. And as the (co)limits
defining Pn can all be computed pointwise, we see that if eK ◦ F is n-homogeneous for each finite
space K, then F itself must have been n-homogeneous.
Now restricting and corestricting the currying isomorphism appropriately, we get that

Homogn(C,Sp(D)) ≃ Sp(Homogn(C,D))

which comes equipped with a natural map to Homogn(C,D), which is an equivalence by the previous
proposition and proposition A.0.12. Which up to a quick dissection of the definitions proves the desired
result.
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2 Defining the derivative

2.1 Multivariable preliminaries

The material we developed in section §1, in analogy with ordinary calculus, admits a multivariable
generalization, which we discuss in this section. We study this with the main goal of defining the
cross-effect functor, and so we will not cover as much material as what is contained in the correspond-
ing sections of [21].

Unsurprisingly the first thing we will generalize is the notion of n-excisive, and theorem 1.2.1.

Definition 2.1.1. (6.1.3.1. in [21]) Suppose we are given ∞-categories C1, C2, ..., Cm which admit
pushouts and D a category with finite limits. Given a sequence of integers n⃗ = (n1, ..., nm), ni ∈ N,
we call a functor F : ∏m

i=1 Ci → D n⃗-excisive if the composition

Cj → Cj ×
m∏

i ̸=j,i=1
{Xj} →

m∏
i=1
Ci

F−→ D

is nj-excisive for any choice of j and objects {Xi}i ̸=j with Xi ∈ Ci. In simpler terms, we call F
n⃗-excisive if it is ni-excisive in its ith variable.
We denote by Excn⃗(∏m

i=1 Ci,D) the collection of all n⃗-excisive functors. In the special case where
n⃗ = (1, ..., 1) we will allow ourselves to use the superscript e.

Notice that a priori studying excisiveness in each variable separately need not relate nicely to
excisiveness when seen as a single variable functor out of C := ∏m

i=1 Ci. But, similar to results in
classical analysis relating differentiability in each variable separately to full differentiability, we have
results relating the above notion of n⃗-excisive with the notion of n-excisive described in subsection
§1.1. We cover one such result at the end of this section. To start our analysis of multivariable
Goodwillie calculus, we prove the following result, which gives us a multivariable analogue of theorem
1.2.1.

Proposition 2.1.2. (6.1.3.6. in [21]) Let C1, C2, ..., Cm be categories which admit finite colimits and a
final object and let D be a differentiable category. Then, for any sequence of integers n⃗, the inclusion
Excn⃗(C,D)→ Fun(C,D) admits a left adjoint Pn⃗, which is left exact.

Proof. We first notice that the isomorphism, which is just the currying adjunction for simplicial sets.

Fun(
m∏
i=1
Ci,D) ≃ Fun(C1,Fun(

m∏
i=2
Ci,D))

nicely restricts to an isomorphism

Excn⃗(
m∏
i=1
Ci,D) ≃ Excn1(C1,Excn⃗′(

m∏
i=2
Ci,D))

where n⃗′ is obtained from n⃗ by omitting the first integer. This opens the way for a proof by induction
on m, as one can observe that the inclusion Excn⃗(C,D)→ Fun(C,D) factors as

Excn1(C1,Excn⃗′(
m∏
i=2
Ci,D)) ι′−→ Excn1(C1,Fun(

m∏
i=2
Ci,D)) ι′′−→ Fun(C1,Fun(

m∏
i=2
Ci,D)).

To initialize the induction, notice that if m = 0 there is nothing to prove. Now assume that the result
holds when we have m − 1 categories, in particular we have a left adjoint Pn⃗′ : Fun(∏m

i=2 Ci,D) →
Excn⃗

′(∏m
i=2 Ci,D), which is also left exact. Post composition by this functor gives a left adjoint

Excn1(C1, Pn⃗′) to the inclusion ι′, and it isn’t hard to observe that this left adjoint is also left exact.
Because D is differentiable and (co)limits of functors are constructed pointwise, we can see that
Fun(∏m

i=2 Ci,D) is differentiable, so that we can apply theorem 1.2.1 to obtain a left exact left adjoint
to ι′′. Composing the left adjoint of ι′ and ι′′ we obtain the desired left adjoint.
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We will now introduce the generalizations of the notions of homogeneous and reduced to this
multivariable context, so that we have access to all the vocabulary we developed in section §1.

Definition 2.1.3. (Definition 6.1.3.7. in [21]) Suppose we are given ∞-categories C1, C2, ..., Cm which
admit finite colimits and final objects and D a differentiable category. Given a sequence of integers
n⃗ = (n1, ..., nm), ni ∈ N, we call a functor F : ∏m

i=1 Ci → D n⃗-reduced if the composition

Cj → Cj ×
m∏

i ̸=j,i=1
{Xj} →

m∏
i=1
Ci

F−→ D

is nj-reduced for any choice of j and objects {Xi}i ̸=j with Xi ∈ Ci. In simpler terms, we call F n⃗-
reduced if it is ni-reduced in its ith variable. We call a functor simply reduced if it is (1, ..., 1)-reduced.
The collection of reduced functors assemble into a category which we denote by Fun∗(∏m

i=1 Ci,D).
Similar to the single variable case, we call a functor n⃗-homogeneous if it is n⃗-reduced and n⃗-excisive.
We assemble these into a full subcategory of the functor category Homogn⃗(∏m

i=1 Ci,D). We call (1, ...1)-
homogeneous functors multilinear, and we denote the category of these functors by Exc∗(∏m

i=1 Ci,D).

Note that in this notation, writing the domain category as a product is important to underline the
multivariable nature of these notions. And so changing how we write ∏m

i=1 Ci, for example by coupling
terms together, changes the meaning of Fun∗(∏m

i=1 Ci,D) (and any of the other functor categories we
introduced).
We already observed that for a single variable functor F : C → D, calling it reduced means that it
preserves final objects. For a multivariable functor F : ∏m

i=1 Ci → D the notion of being reduced can
be rephrased as requiring F to map (X1, ..., Xm) to the final object of D if even one of the Xi is a
final object of Ci.

Now in order to understand these multivariable notions, it is interesting to see what happens when
we set C := ∏m

i=1 Ci and observe how the multivariable properties appear when we view a functor
F : C → D has having a single variable. These questions are the functor calculus parallel of under-
standing how the Jacobian is related to directional derivatives in ordinary multivariable analysis. In
our situation this is accomplished by the two following results.

Proposition 2.1.4. (Proposition 6.1.3.4. in [21]) Let {Ci}mi=1 be categories with finite colimits and a
final object, let {ni}mi=1 be a sequence of positive integers, let D be a category with finite limits and let
F : ∏m

i=1 Ci → D be a functor which is ni excisive in its ith variable. Then viewed as a single variable
functor, it is n-excisive, where n = n1 + ...+ nm.

Proof. When we view the functor as having one variable, we will write its domain as C, otherwise we
will use the notation of the result. Given a strongly coCartesian n-cube X : N(P([n]))→ C, we want
to show that F (X) is Cartesian. By the universal property of the product and because colimits are
computed component wise we have corresponding strongly coCartesian n-cubes Xi : N(P([n])) → Ci
such that we have a factorization of X as

N(P([n])) ∆−→ N(P([n]))m
∏m

i=1 Xi−−−−−→
m∏
i=1
Ci.

Recall that the nerve commutes with products, so that we can replace the middle term by N(P([n])m).
What we want to show can be rephrased as requiring that Y = F ◦ (∏m

i=1Xi) exhibits Y (∅, ∅, ..., ∅) as
the limit of Y |N(A), where A ⊂ P([n])m is the full subcategory of m-tuples (S, S, ..., S) such that S is
non-empty.
To compute this colimit, we will use the usual idea of changing the diagram category to something
more manageable. In this case, let B ⊂ P([n])m be the full subcategory spanned by those m-tuples
whose intersection is non-empty. We obviously have an inclusion ι : A → B. By the adjoint functor
theorem for posets we easily see that ι must be a left adjoint, thus must be initial by corollary
7.2.3.7. in [22] (see the comment in §0.0.8 for a comment on nomenclature), i.e. the natural map
lim←−(Y |N(B))→ lim←−(Y |N(A)) is an equivalence.
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To compute this limit lim←−(Y |N(B)), we will actually prove the stronger statement that Y is a right
Kan extension of Y |N(B). We will do this by dividing the problem. Consider a chain of subcategories

B = B0 ⊂ B1 ⊂ ... ⊂ Bk = P ([n])m,

with the following two properties:

(i) Each Bj is closed upwards, i.e. if we have (S1, ..., Sm) ∈ Bj and (S1, ..., Sm) ≤ (S′
1, ..., S

′
m), then

(S′
1, ..., S

′
m) ∈ Bj .

(ii) Each Bj is obtained from Bj−1 by adding a single element.

What this accomplishes is that it now suffices to show that Y |N(Bj) is a right Kan extension of
Y |N(Bj−1). Let S = (S1, ..., Sm) be the unique element added to Bj−1 to get to Bj . This element must
belong to the complement of Bj−1, in particular of B, so that the intersection of the {Si}mi=1 is empty.
This in turn means the union ⋃m

i=1 S
c
i = [n], now because the cardinality of [n] is n+1 ≥ n1 + ...+nm,

there must be at least one Si, say Sj , such that |Scj | > nj .
Now notice that for Y |N(Bj) to be a right Kan extension of the restriction of Y to N(Bj−1) it suffices
to verify that

Y (S) ≃ lim←−
S→Z∈S/N(Bj−1)

Y (Z).

Notice that the diagram of the above limit is a cube, indeed the Z such that there exists a morphism
S → Z correspond to m-tuples (S′

1, ..., S
′
m) such that Si ⊂ S′

i, which in term correspond to m-tuples
of subsets of Sci , finally taking a disjoint union, we see that the shape of the diagram is P(⊔m

i=1 S
c
i ).

Under this correspondence, the above equivalence becomes Ỹ : S/N(Bj−1)→ D, which is Cartesian.
Let T ⊂ Sj be of cardinality nj + 1, and view this as a subset of ⊔m

i=1 S
c
i . Then by lemma 1.1.6, it

suffices to verify that each T -face of Ỹ is Cartesian. It isn’t hard to verify this using that Ỹ can be
written as F ◦ X̃ such that this X̃ is strongly coCartesian (so its T -faces as well by lemma 1.1.6), F
is nj-excisive, that T -faces are nj-cubes and the fact that the T faces are constant on all coordinates
different than the jth.

Proposition 2.1.5. (Proposition 6.1.3.10. in [21]) Let {Ci}mi=1 be categories with finite colimits and a
final object, let D be a differentiable category and let F : ∏m

i=1 Ci → D be a functor which is 1-reduced
each variable. Then viewed as a single variable functor, it is m-reduced.

Proof. Denote by F ′ the functor F seen as a one variable functor, by definition what we want to show
is that Pm−1F

′(X) is final for all X ∈ Ob(C). Using the same ideas as in the proof of lemma 1.2.11,
we see that it suffices to show that each T km−1F

′(X)→ T k+1
m−1F

′(X) factors through a final object. It
isn’t hard to see that viewing F as an m-variable functor, it being (1, ..., 1) reduced implies the same
for Tm−1F . This means that it suffices to show that for any (1, ..., 1)-reduced functor G (which we
denote G′ when we see it as a single variable functor) the natural map θ : G′(X)→ Tm−1G

′(X) does
so.
Let X = (X1, ..., Xm) ∈ Ob(C) be some fixed object of Cn. Recalling the definitions, we see that θ is
equivalent to the natural map

G′(X) = G′(C∅(X))→ lim←−
∅≠S⊂[m−1]

G′(CS(X)).

However in order to use the assumption that G is reduced in each variable, it is natural to want to
write the above by considering G as a multivariable functor. This is done by the following functor
Y : N(P([m− 1])m)→ D which on objects is defined by

(S1, ..., Sm) 7→ G(CS1(X1), ..., CSm(Xm)).

Note we are mildly abusing notation and identifying [m− 1] with {1, ...,m} in order for the subscripts
of the sets S• to match the subscripts of the objects X•. With this functor in hand, we can rewrite
the map of interest as

Y (∅, ..., ∅)→ lim←−
N(P([m−1])m)

Y → lim←−
N(A)

Y |N(A),
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where A ⊂ N(P([m− 1])m) is the full subcategory consisting of tuples where every object is the same
set. In order to see that this map factors through a final object, we will find some intermediary
diagram A ⊂ B ⊂ N(P([m− 1])m) with the property that lim←−N(B) Y |N(B) is a final object. Indeed, for
such a B, we have that θ factors as

Y (∅, ..., ∅)→ lim←−
N(P([m−1])m)

Y → lim←−
N(B)

Y |N(B) ≃ ∗ → lim←−
N(A)

Y |N(A).

We let B be the full subcategory spanned by those m-tuples (S1, ..., Sm) such that there exists an
index i with i ∈ Si. The required property that A ⊂ B is clear. Now to compute the desired limit
we use the recurring trick of finding a different diagram with equivalent but easier to compute limit.
For this, let B0 ⊂ B consist of those m-tuples such that for some index i we have Si = {i}. By
using theorem A.0.10, we see that to show that this map is initial, it suffices to show that for each
(S1, ..., Sm) ∈ B, the nerve of the full subcategory V whose objects are

{(S′
1, ..., S

′
m) ∈ B0|S′

i ⊂ Si}

is weakly contractible. We have an inclusion V0 ⊂ V , where V0 consists of those m-tuples such that
S′
i ⊂ {i}. This inclusion admits a right adjoint as it clearly preserves all supremums (i.e. colimits),

so that we may conclude by the adjoint functor theorem for posets. Thus N(V0) ≃ N(V ). As V0
has a final object ({1}, {2}, ..., {m}), we have that N(V0) is contractible. Thus the restriction map
lim←−N(B) Y |N(B) → lim←−N(B0) Y |N(B0) is an equivalence and this limit is easy to compute.
Indeed, for each vertex (S1, ...Sm) ∈ B0, we have that at least one of the Si is a singleton, so that
CSi(Xi) is a final object. Which because G is reduced in each variable by assumption implies that
Y (S1, ..., Sm) = G(CS1(X1), ..., CSi(Xi), ..., CSm(Xm)) is final. A diagram of final objects is final, thus
showing that lim←−N(B) Y |N(B) ≃ ∗. This proves the desired result.

Note that the above two results can be combined to say that a functor F : ∏m
i=1 Ci → D which is

1-homogeneous in each variable is m-homogeneous when viewed as a single variable functor.

The property of being reduced can be quite desirable, so it would be nice to have have a functorial
way to obtain reduced functors from arbitrary functors. This is accomplished by the following result.

Proposition 2.1.6. (Corollary 6.1.3.18. in [21]) Let C1, ..., Cm be categories which admit a final object
and let D be a pointed category with finite limits. Then the inclusion

Fun∗(
m∏
i=1
Ci,D)→ Fun(

m∏
i=1
Ci,D)

admits a right adjoint denoted by Red : Fun(∏m
i=1 Ci,D)→ Fun∗(∏m

i=1 Ci,D).

Using that the subcategory of reduced functor is full, it will suffice to find a functor Red :
Fun(∏m

i=1 Ci,D) → Fun(∏m
i=1 Ci,D) such that Red(F ) is always a reduced functor, and equipped

with a natural map Red(F )→ F which induces an equivalence

MapFun(
∏m

i=1 Ci,D)(G,Red(F ))→ MapFun(
∏m

i=1 Ci,D)(G,F ).

We explicitly construct Red in the following definition, and then the following proposition will show
the desired properties so that this functor is a right adjoint to the inclusion.

Definition 2.1.7. (Construction 6.1.3.15. in [21]) Let C1, ..., Cm be categories which admit a final
object ∗i ∈ Ci, let D be a pointed category with finite limits and let F : ∏m

i=1 Ci → D be a functor.
For each i, denote by Ui : Ci → Ci the constant functor equal to ∗i. Choose a natural transformation
αi : IdCi → Ui. Let T ⊂ [m], and define F T (X1, ..., Xm) = F (X ′

1, ..., X
′
m) where X ′

i = Xi if i /∈ T and
X ′
i = ∗i if i ∈ T . Using the αi we can assemble these functors into a N(P([m]))-shaped diagram of

functors.
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Using this diagram it is clear that we have a natural transformation β : F = F ∅ → lim←−∅≠T⊂[m] F
T .

Because D is pointed, the same holds true for the functor category Fun(∏m
i=1 Ci,D), and so we can

take the fiber of β. This fiber is what we call the reduction of F and denote by Red(F ). This functor,
as the fiber of a map F → lim←−∅≠T⊂[m] F

T admits a natural map to F .

Lemma 2.1.8. (Proposition 6.1.3.17. in [21]) Let C1, ..., Cm be categories which admit a final object
∗i ∈ Ci, let D be a pointed category with finite limits and let F : ∏m

i=1 Ci → D be a functor. Then
Red(F ) is a reduced functor and the natural map Red(F )→ F induces an equivalence

MapFun(
∏m

i=1 Ci,D)(G,Red(F ))→ MapFun(
∏m

i=1 Ci,D)(G,F ).

Proof. We use the same notation as in the statement of the result and the definition of Red(F ), in
particular we use without further comment the notation F T for F : ∏m

i=1 Ci → D a functor and
T ⊂ [m] a subset. At first we want to show that Red(F ) is a reduced functor. To do this let
(X1, ..., Xm) ∈ Ob(∏m

i=1 Ci) be such that at least one of the Xi is a final object, say Xj . If we show
Red(F )(X1, ..., Xm) is a final object, we are done. Because Red(F ) is a fiber of some map, it suffices
to show the map β : F = F ∅ → lim←−∅≠T⊂[m] F

T in question is an equivalence, which is what we will
prove.
To this end, notice at first that for all T ⊂ [m], the natural map F T (X1, ..., Xm)→ F T∪{j}(X1, ..., Xm)
is an equivalence. From this we see that the m-cube T 7→ F T (X1, ..., Xm) is a right Kan extension of
the restriction of this diagram to the subcategory of N(P([m])) containing j. So the natural map

lim←−
∅≠T⊂[m]

F T (X1, ..., Xm)→ lim←−
{j}⊂T⊂[m]

F T (X1, ..., Xm)

is an equivalence, further one may notice that the codomain of this equivalence can be chosen to be
F {j}(X1, ..., Xm) as j is initial in the subdiagram of N(P([m])) consisting of those subsets containing
j. So we can compute Red(F )(X1, ..., Xm) as the fiber of the map F (X1, ..., Xm)→ F {j}(X1, ..., Xm),
but as Xj is a final object, this map is an equivalence so that Red(F )(X1, ..., Xm) is a 0 object, in
particular final, proving that Red(F ) is final.

We now prove that the natural map Red(F )→ F induces the desired equivalence

MapFun(
∏m

i=1 Ci,D)(G,Red(F ))→ MapFun(
∏m

i=1 Ci,D)(G,F )

when G is a reduced functor. Recall that because MapFun(
∏m

i=1 Ci,D)(G,−) preserves limits, it in
particular preserves fiber sequences. Namely, it sends the fiber sequence defining Red(F ) to the fiber
sequence

MapFun(
∏m

i=1 Ci,D)(G,Red(F ))→ MapFun(
∏m

i=1 Ci,D)(G,F )→ lim←−
∅≠T⊂[m]

MapFun(
∏m

i=1 Ci,D)(G,F
T ).

As a limit of contractible spaces is contractible, this reduces the problem to showing that for each
T ̸= ∅ the space MapFun(

∏m

i=1 Ci,D)(G,F T ) is contractible. To do this, et j ∈ T and consider the
subcategory E ⊂ ∏m

i=1 Ci of m-tuples where the jth coordinate is a final object. The interest of this
subcategory is that, because G is a reduced functor, it is a natural subcategory for which when we
restrict, it is obvious that MapE(G|E , F T |E) is contractible. In order for this to be of any use, we would
want the restriction MapFun(

∏m

i=1 Ci,D)(G,F T )→ MapE(G|E , F T |E) to be an equivalence. This will be
the case if F is a right Kan extension of its restriction to E by lemma A.0.5. But this is obvious by
construction of F T , thus concluding the proof.

This proves that the reduction functor we constructed is a right adjoint to the inclusion of reduced
functors, thus proving proposition 2.1.6. This now allows us to define the cross effect of a functor.

Definition 2.1.9. (Construction 6.1.3.20. in [21]) Let C be a category with finite colimits and a final
object, let D be a pointed category with finite limits, and F : C → D. We have a functor q : Cn → C
which maps an n-tuple to the coproduct of these objects. The functor crn := Red(F ◦ q) : Cn → D is
defined, this is what we call the nth-cross effect.
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For example, for n = 2, the cross effect of a functor F : C → D evaluated at (c1, c2) is the fiber of
the natural map F (c1 ⊔ c2)→ F (c1)×F (∅) F (c2).

Intuitively, it is clear in what sense the nth cross-effect of a functor is a symmetric functor, our
goal for the remainder of this section is to make this precise. Our first step towards this is to define
an analogue of Cn whose n-tuples aren’t ordered.

Definition 2.1.10. (Notation 6.1.4.1. in [21]) Recall that for a group G, we have a contractible
simplicial set EG with a free action of G, such that EG/G ≃ BG is a classifying space. Then for a
simplicial set K, the simplicial set

(Kn × EΣn)/Σn

is an explicit model for the (homotopy) limit Kn/Σn. In the case where K is an ∞-category, this
quotient does indeed encode unordered n-tuples of K. We denote this construction by K(n).
This allows us to define a symmetric n-ary functor as a functor C(n) → D, these obviously assemble
into a category SymFunn(C,D). A symmetric n-ary functor always has an underlying functor Cn → D,
and so we define a symmetric n-ary functor to be reduced if it is underlying functor is reduced (in
each variable). The reduced symmetric n-ary functors assemble into a categoy SymFunn∗ (C,D) which
is a full subcategory of SymFunn(C,D).

Now to find ourselves in a situation where we can say that the cross effect is naturally symmetric,
we would want a symmetric equivalent of proposition 2.1.6. This is accomplished by the following
result.

Proposition 2.1.11. (Proposition 6.1.4.3. and remark 6.1.4.4. in [21]) Let C be a category with
finite colimits and a final object and let D be a pointed category with finite limits. Then, the inclusion
SymFunn∗ (C,D)→ SymFunn(C,D) admits a right adjoint θ which fits into the following diagram

SymFunn(C,D) SymFunn∗ (C,D)

Fun(Cn,D) Fun∗(Cn,D)

θ

Red

.

The vertical maps are the passage to the induced functor.

Proof. The inclusion of categories ι : Fun∗(Cn,D) → Fun(Cn,D) is in fact a Σn-equivariant map,
and quotienting by this action yields the inclusion we are interested in ιSym : SymFunn∗ (C,D) →
SymFunn(C,D). From this a natural guess for the right adjoint of ιSym is the map induced by Red
after quotienting by Σn. This makes sense as Red is Σn-equivariant. Call this functor θ, we wish to
show that θ is a right adjoint to ιSym. This follows from the fact that a natural transformation of
two functors F,G : C(n) → D contains the same data as a natural transformation of the underlying
functors Cn → D.
The fact that θ and Red fit into a commutative diagram as in the statement of the result can be seen
directly by observing what happens to a specific F ∈ SymFunn(C,D).

Although they are two different functors, we will abuse notation and write Red both for the functor
Fun(Cn,D) → Fun∗(Cn,D) and for the functor SymFun(Cn,D) → SymFun∗(Cn,D). If we need to be
specific we may denote the latter by RedSym.

Now because the map F ◦ q(X1, ..., Xn)→ F (X1 ⊔ ... ⊔Xn) is symmetric, it makes sense that we
should take its symmetric reduction, thus defining the symmetric cross effect.

Definition 2.1.12. (Construction 6.1.4.5. in [21]) Given a functor F : C → D from a category
with finite colimits and a final object to a pointed category with finite limits, we denote by cr(n) the
symmetric reduction of F ◦ q : C(n) → D.

We allowed ourselves the abuse of notation of writing q both for the functor Cn → C and for the
functor C(n) → C. This shouldn’t cause any confusion. Obviously the symmetric cross effect is a
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symmetric functor, so has an underlying functor Cn → D. It isn’t hard to see that this functor is the
“ordinary” cross effect and how they fit into the following diagram

SymFunn(C,D)

Fun(C,D) Fun(Cn,D)crn

cr(n) .

As we wish to study the cross effect, it is natural to study the excisiveness, when the input functor
itself is excisive, this is accomplished by the following result. It is clear how to interpret this result
for the symmetric cross effect, by passing to the underlying functor.

Proposition 2.1.13. (Proposition 6.1.3.22. in [21]) Let C be a category with finite colimits and a
final object, let D be a pointed differentiable category and let F : C → D be an n-excisive functor. For
each m ≤ n+ 1, we have that crm(F ) : Cm → D is (n−m+ 1)-excisive in each variable.

Proof. As the condition is vacuous for m = 0, we are encouraged to pursue a proof by induction.
Assume the result holds for m − 1, let’s show it for m. Because the cross effect is invariant under
permutation of its input, we may fix X2, ..., Xm and simply show that X1 7→ crm(F )(X1, ..., Xm) is
(n −m + 1)-excisive, to show that crm is (n −m + 1)-excisive in each variable. For this, let ∗ be a
final object of C, let G(X) = F (X ⊔Xm), G′′(X) = (X ⊔ ∗) and G′(X) the fiber of the natural map
G(X) → G′′(X) induced by the map Xm → ∗. Because limits commute, consulting the definition, it
isn’t hard to see that

crm(F )(X1, ..., Xm) ≃ crm−1G
′(X1, ..., Xm−1).

So to show the (n+m−1)-excisiveness of the functor on the left, it suffices to prove this for the functor
on the right. And for this, by the induction hypothesis, it suffices to show that G′ is (n− 1)-excisive.
Let Y be a strongly coCartesian (n − 1)-cube in C, we need to show that G′(Y ) is Cartesian. We
define an n-cube Y ′ by mapping a subset T ⊂ [n] to Y (T ) ⊔ Xm if n /∈ T and to Y (T\{n}) ⊔ ∗ if
n ∈ Y . Using lemma 1.1.4 we see that this cube is still strongly coCartesian, so F (Y ′) is a Cartesian
cube. This means that the following square is a pullback

F (Y (∅) ⊔Xm) lim←−∅≠S⊂[n−1] F (Y (∅) ⊔Xm)

F (Y (∅) ⊔ ∗) lim←−∅≠S⊂[n−1] F (Y (∅) ⊔ ∗)

.

We obtain the desired result by taking fibers of the vertical maps, which are equivalent as this square
is a pullback.
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2.2 Classifying homogeneous functors

In keeping with the analogy that we are trying to develop a parallel to the theory of derivatives
and Taylor series of ordinary calculus, one can notice that we have done things “upside down”. We
have defined a satisfactory notion of “degree n polynomial approximation”, and from this trying to
obtain a satisfactory definition of nth derivative. It isn’t too hard to “subtract” to approximate a
degree (n− 1)-approximation from a degree n-approximation, by taking the fiber of the natural map
PnF → Pn−1F . This gives us an analogue to the association f 7→ f (n)(0)

n! xn in classical calculus, and
so all that is left to do is to multiply by n! (and then evaluate at xx = 1). This is surprisingly hard,
because there is no obvious candidate for n! · (−) in this abstract framework.
However, in classical calculus, there is another construction which can get rid of the n!, and this is
what we emulate in this section. Given a continuous function f : R→ R, associate to it its “nth cross
effect”, which is given by

crn(f)(x1, ..., xn) = Σn
i=0(−1)n−iΣI⊂{1,...,n},|I|=if(Σk∈Ixk).

Although quite convoluted, if we observe what this map does to monomials, and polynomials of degree
n, one might end up considerably less surprised by theorem 2.2.1 and lemma 2.2.4.
Indeed, one can observe by induction that crn(axn) = a(n!x1x2 · · ·xn), which is a convoluted way to
multiply by n!, though in our situation turns out to be more natural, and is also an association of a
multilinear polynomial to a homogeneous degree n polynomial, which is exactly what theorem 2.2.1
will achieve. One can also observe, that a polynomial p of degree n such that crn(p) = 0 is at most of
degree (n− 1), which is a classical analogue of lemma 2.2.4.

For us, these two results are logically dependent as the latter will serve to prove former, whose
proof is the main goal of this subsection. The statement of this result in our abstract setting is as
follows.

Theorem 2.2.1. (6.1.4.7. in [21]) Let C be a pointed category with finite colimits and a final object,
let D be a pointed differentiable category. Then we have a fully faithfull embedding

cr(n) : Homogn(C,D)→ SymFunn(C,D).

The essential image of cr(n) is the full subcategory SymFunnlin(C,D) of those functors E : C(n) → D
whose underlying functor E : Cn → D is multilinear.

The proof of this result will rely on a reduction to the stable case, courtesy of corollary 1.3.3, on
the multivariable theory developed in subsection 2.1 and on a couple of extra lemmas we prove in this
section.

We first prove a series of lemmas with the end of goal of proving that cr(n) is conservative, i.e.
preserves and reflects equivalences. Recall that our proof will rely on reducing to the stable case,
which is why (some of) our lemmas are concerned with functors with stable codomain.

Lemma 2.2.2. (6.1.4.8. in [21]) Let C be a category with finite colimits and a final object, let D be
a category with finite limits. And let F : C → D be an n-excisive functor, with n ≥ 1. We have an
equivalence between

(i) F is (n− 1)-excisive and

(ii) let X be a strongly coCartesian (n− 1)-cube such that X(∅) is a final object of C, then F (X) is
a Cartesian (n− 1) cube of D.

Proof. The implication (i) ⇒ (ii) is immediate, so assume F is an n-excisive functor which carries
strongly coCartesian (n − 1)-cubes Y with Y (∅) final to Cartesian cubes. We wish to show this
functor carries any strongly coCartesian (n − 1)-cube to a Cartesian cube. So let X be a strongly
coCartesian (n− 1)-cube. We can consider a strongly coCartesian n-cube X ′ with the property that
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X ′|N(P([n−1])) = X and X ′({n}) = ∗ is a final object of C. Now by assumption that F is n-excisive,
we have that FX ′ is a Cartesian cube. Thus we have a pullback square:

F (X(∅)) lim←−∅≠S⊂[n−1] F (X(S))

F (X({n}) lim←−∅≠S⊂[n−1] F (X(S ∪ {n}))

.

Now the bottom map is the natural map F (X̃(∅)) → lim←−∅≠S⊂[n−1] F (X̃(S)), where
X̃ : S 7→ X ′(S ∪ {n}) is strongly coCartesian (n − 1)-cube with X̃(∅) final by construction. By
assumption, F sends X̃ to a Cartesian cube, thus this map is an equivalence. And as the pullback of
an equivalence is an equivalence, we are done.

Lemma 2.2.3. (Lemma 6.1.4.9. in [21]) let C be a category with finite colimits and a final object
∗, let D be a stable category and let F : C → D be an n-excisive functor, with n ≥ 1. Recall that
q : Cn → C is the coproduct functor. We have an equivalence between

(i) F is (n− 1)-excisive and

(ii) for every finite sequence of morphisms {∗ → Ci}ni=1, which we consider as maps αi : ∆1 → C, the
natural strongly coCartesian (n−1)-cube X (seen as a map N(P({1, ..., n}))→ C for convenience
of notation) with the property that X(∅ → {i}) = ∗ → Ci is sent to a C artesian cube by F .

Proof. Once again the implication (i)⇒ (ii) is immediate, so assume that (ii) holds. To show (n−1)-
excisiveness from n-excisiveness, we now have the above lemma. Let Y be a strongly coCartesian
(n − 1)-cube, with the property that Y (∅) is final, if we show that F (Y ) is Cartesian, we are done.
Now let Ci = Y ({i}), we have natural maps ∗ → Ci where ∗ is a final object. These maps can be seen
as maps αi : ∆1 → C, which assemble, as in the statement of the lemma, into a strongly coCartesian
cube X. There is clearly a natural map β : X → Y , and all of this can be assembled into a strongly
coCartesian cube n-cube Z. Now because F is n-excisive, it sends Z to a Cartesian cube, which in
turn implies we have a pullback

F (X(∅)) lim←−∅≠S⊂[n−1] F (X(S))

F ((Y (∅)) lim←−∅≠S⊂[n−1] F (Y (S))

.

Now the top map is an equivalence by assumption, this square is also a pushout as D is stable and
the pushout of an equivalence is an equivalence, thus proving the claim.

Lemma 2.2.4. (Lemma 6.1.4.10. in [21]) let C be a category with finite colimits and a final object, let
D be a stable category and let F : C → D be an n-excisive functor, with n ≥ 1. We have an equivalence
between

(i) F is (n− 1)-excisive and

(ii) The n-fold cross effect crn(F ) maps every object of Cn to the 0-object of D.

Proof. If F is (n − 1)-excisive, by lemma 2.1.13 we may conclude that crn(F ) is a (0, ..., 0) excisive
functor, or in other words it is constant. As it is also reduced, it must be constant equal to a final
object. Now assume that F is n-excisive and that crn(F ) is constant equal to a final object.
We will use the previous lemma. Let {αi : ∗ → Ci}ni=1 be a collection of maps, where ∗ is a final
object of C. Let X be the natural strongly coCartesian n− 1, viewed as a map N(P({1, ..., n}))→ C
for convenience of notation, with the property that X(∅ → {i}) = ∗ → Ci. If F (X) is Cartesian, we
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are done.
For each 1 ≤ i ≤ n, extend αi to the following two simplex σi

Ci

∗ ∗

!αi

Id

.

Denoting the set {1, ..., n} by S, we have a natural map Y : (∆2)S
∏n

i=1 σi−−−−−→ CS q−→ C where q is
the coproduct map. We use Y to create cubes which interpolate between a cube which obviously
mapped to a Cartesian cube by Y and the cube X of interest to us. We do this in order to set up
a proof by induction. This interpolation is defined as follow, let Yi : N(P(S)) → C be defined by
Yi(T ) = Y (a1, ..., an) where aj = 0 ∈ ∆2 if j ≥ i and j /∈ T , aj = 2 ∈ ∆2 if j < i and j ∈ T and
aj = 1 ∈ ∆2 in the remaining cases.
One can observe that Yn is equivalent to X, so we may now proceed with the promised induction that
F (Yi) is a Cartesian cube for each i. For i = 0, we need to show that the map

F (Y0(∅)) ≃ lim←−
∅≠T⊂S

(F (Y0))

is an equivalence. It isn’t hard to notice that the fiber of this map is crn(F ), which vanishes by
assumption, thus implying that the above map is indeed an equivalence.
Now for the induction step, we may suppose the result holds for i− 1 ≥ 0, and we want to show it for
i. Let S′ = S\{i}, we have a commutative diagram

F (Yi(∅)) F (Yi−1(∅)) F (Yi−1({i}))

lim←−∅≠T⊂S′ F (Yi(T )) lim←−∅̸=T⊂S′ F (Yi−1(T )) lim←−∅≠T⊂S′ F (Yi−1(T ∪ {i}))

.

The right most square is a pullback by induction assumption. Also by construction the horizontal com-
positions are equivalences, so that the big outer rectangle is a pullback as well. This is known to imply
that the left square is a pullback. We obtain the desired result after noticing that Yi−1(T ) = Yi(T∪{i}),
so that the statement the left square is a pullback implies that F (Yi(∅)) → lim←−∅≠T⊂S F (Yi(T )) is an
equivalence.

Lemma 2.2.5. (Lemma 6.1.4.11. in [21]) Let C be a pointed category with finite colimits, let D be a
stable category which admits finite colimits. Let α : F → G be a natural transformation of functors
F,G : C → D. Then α is an equivalence if and only if crn(α) is an equivalence.

Proof. Assume that crn(α) is an equivalence, let H be the fiber of α. The fiber of a map of n-excisive
functors is n-excisive, because Pn is left exact and the fiber of a map of n-reduced functors is n-reduced
for the same reason. So H is n-homogeneous. Our goal is to use the previous lemma to show that
H is (n− 1)-excisive, which because H is n-reduced will imply that H is the 0 of the stable category
Fun(C,D), which will imply that α is an equivalence, as desired.
So we want to compute crn(H). For this observe that H(X1⊔ ...⊔Xn) = Fib(F α−→ G)(X1⊔ ...⊔Xn) ≃
Fib(F (X1 ⊔ ... ⊔Xn) α−→ G(X1 ⊔ ... ⊔Xn)). Combining this with the fact that Red is a right adjoint,
so preserves fibers, yields that crnH ≃ Fib(crn(α)). Because crn(α) is an equivalence, this shows that
crnH must be constant equal to the 0-object of the stable category D or in other words is the 0-object
of the stable category Fun(C,D). This is what we wanted to show.

The next two lemmas will in time serve to show that the functor cr(n) is an adjoint, which will be
an important part in the proof of theorem 2.2.1.

Lemma 2.2.6. (Lemma 6.1.4.12. in [21]) Let C be a category with finite colimits, let D be a stable
category and let F : C → D be a 1-excisive functor. Then F carries strongly coCartesian cubes to
strongly coCartesian cubes.
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Proof. This is an immediate corollary to lemma 1.1.4. Indeed F carries pushouts to pullbacks, which
are themselves pushouts as D is stable, and from this, one may verify immediately using one of the
alternative characterizations of strongly coCartesian that F preserves general strongly coCartesian
cubes.

Lemma 2.2.7. (Lemma 6.1.4.13. in [21]) Let C be a category with finite colimits and a final object,
let D be a stable category and let F : Cn → D be a (1, ..., 1)-excisive functor. For every σ ∈ Σn let F σ
be the precomposition by the natural automorphism Cn → Cn which permutes the factors via σ. Let
δ : C → Cn be the diagonal map, f = F ◦ δ. Then there is a canonical equivalence

crn(f) ≃
⊕
σ∈Σn

Red(F σ).

In particular if F is (1, ..., 1)-homogeneous, then crn(f) ≃⊕
σ∈Σn

F σ.

Proof. It is a recurring idea to prove results by “fattening” points by sets. In this proof, letting
S = {1, ..., n}, we do this by introducing for all T⃗ = (T1, ..., Tn) ∈ N(P(S)) the functor FT⃗ , which is
precomposition of F by the functor Cn → Cn, which is defined as

(X1, ..., Xn) 7→ (
⊔
i∈T1

Xi,
⊔
i∈T2

Xi, ...,
⊔
i∈Tn

Xn).

The sense in which this is a “fattening” of the construction F σ, which associates to a map S → S
a modified version of F , is that taking T⃗σ = {σ(1), ..., σ(n)} yields F σ; but in addition, with the
construction just decribed we get a modified version of F for any map S → P(S). Further notice that
for T⃗ = (S, ..., S), we have Red(FT⃗ ) = crn(f).
By the previous lemma, the assumption that F is 1-excisive in each variable implies that, for any
(X1, ..., Xn) ∈ Cn, the construction T⃗ 7→ FT⃗ (X1, ..., Xn) is strongly coCartesian separately in each
variable. This implies that the following map is an equivalence

lim−→
T⃗∈N(P≤1(S)n)

FT⃗ → F(S,...,S).

Because Fun(C,D) is stable, the colimit of the map Z : N(P≤1(S)n)→ Fun(C,D) defined by Z(T⃗ ) =
Red(FT⃗ ) is crn(f). This is because Red is a right adjoint, thus left exact, which in a stable category
is equivalent to right exact (this proposition 1.1.4.1. in [21]).
We will compute this colimit by changing the diagram category, let P ⊂ P≤1(S)n be the full subcate-
gory whose objects are those n-tuples whose union is S. If T⃗ ∈ Ob(P≤1(S)\S), then FT⃗ is independent
of one of its arguments, so that Red(FT⃗ ) is constant equal to a 0 object of D. Thus Z is a left Kan
extension of its restriction to N(P ), which means we can compute the colimit lim−→T⃗∈N(P≤1(S)n) Red(FT⃗ )
after restricting to N(P ). We can see this claim by pondering the following composing of adjunction
(where the top map is the left adjoint) and noticing that ι∗ ◦∆ = ∆:

Fun(P,F) Fun(N(P≤1(S)n),F) Fun(C,D)

ι!

ι∗

lim−→

∆

.

We denote by ι! the left adjoint to precomposing by ι, by proposition 4.3.2.17. in [20], this corresponds
to left Kan extensions.
Now the result follows by noticing that elements of T⃗ ∈ N(P ) correspond to permutations of S in such
a way that FT⃗ ≃ F

σ and that P is a discrete poset, so that we have

crn(f) ≃ lim−→
T⃗∈N(P≤1(S)n)

Red(FT⃗ ) ≃ lim−→
T⃗∈N(P )

Red(FT⃗ ) ≃
⊕
σ∈Σn

F σ.
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With all of these lemmas in hand, we are finally ready to prove theorem 2.2.1.

Proof. A priori, it isn’t clear the the codomain is what we claim it to be. In particular, for F an
n-homogeneous functor, we want to be sure that cr(n) F is symmetric and multilinear. It is symmetric
by construction and multilinear by combining proposition 2.1.13 for (1, ..., 1)-excisiveness and 2.1.6 for
reducedness.
Recall we have a functor Ω∞ : Sp(D)→ D (see notation 1.4.2.20. in [21]), this induces a commutative
diagram

Homogn(C, Sp(D)) SymFunnlin(C,Sp(D))

Homogn(C,D) SymFunnlin(C,D)

cr(n)

ψ

cr(n)

.

We will use this diagram to reduce to the stable case. First, by corollary 1.3.3, the left vertical map
is an equivalence. The right vertical map is also an equivalence due to corollary 1.3.3. To see this,
first notice that by fixing all the coordinates but one, we obtain that Exc∗(Cn, Sp(D))→ Exc∗(Cn,D)
is an equivalence, and from this we obtain the desired result by quotienting by the natural Σn action.
So to show the desired result that the bottom map is an equivalence, it suffices to show that the top
map is an equivalence, thus we may henceforth assume that D is stable.
In particular, this means we may assume that D admits finite colimits (proposition 1.1.3.4. in [21]),
which as D is assumed to contain sequential colimits implies it contains countable filtered colimits,
which in turn implies C contains all countable limits (see 4.2.3.11. in [20]).
We will show that cr(n) is an equivalence by showing that it is an adjoint equivalence, to do this we
first construct a left adjoint to precomposition by q, i.e. a left Kan extension along q. Recall that
q : C(n) → C is the functor which maps an n-tuple to the coproduct. This can be rephrased as asking
whether the induced maps C(n) ×C C/C → D admit colimits for all C ∈ Ob(C). To show this, notice
that the inclusion {C}(n) → C(n)×C C/C as the n-fold coproduct of the identity map exhibits {C}(n) as
a final object in C(n)×C C/C , in particular the inclusion is initial (i.e. by 7.2.3.7. in [22]). So it suffices
for D to admit all {C}(n) shaped colimits. Inspecting the definition, this simplicial set is equivalent to
BΣn which contains countably many simplicies, and because D admits countable colimits, it admits
{C}(n) shaped colimits. This proves that any functor C(n) → D admits a left Kan extension along
q. By proposition 4.3.2.17. in [20], the left Kan extension along q, denoted by q!, is indeed the left
adjoint to precomposition by q. We can fit this into the following diagram

Fun(C,D) ⊤ SymFunn(C,D) ⊤ SymFunn∗ (C,D)

−◦q

q!

Red

ι

.

As a composition of right adjoints is the right adjoint to the composition of the left adjoint, this shows
that ϕ : q! ◦ ι is a left adjoint to cr(n) = Red(− ◦ q). We know that if we restrict the cross effect to
n-homogeneous functors, we can corestrict to multilinear symmetric functors. In order to turn this
adjunction into the desired equivalence, we also need to show that restricting ϕ to the multilinear
symmetric functors, we may corestrict it to the n-homogeneous functors.
For this we need a slightly more explicit description of ϕ, by studying the definition of a left Kan
extension (see A.0.3) and using the initial map BΣn ≃ {C}(n) → C(n) ×C C/C , we see that pointwise
q!(F )(C) = lim−→BΣn

F (C, ..., C) = F (C, ..., C)hΣn , which if we denote ∆ : C → Cn the diagonal map, can
be stated as q!F = (F ◦∆)hΣn . As ϕ is just precomposition of q! by an inclusion the same computation
holds for ϕ. The functor F ◦ ∆ is n-reduced by lemma 2.1.5 and the fact that F is multilinear and
n-excisive by lemma 2.1.4 and again the fact that F is multilinear, thus F ◦ ∆ is n-homogeneous.
To see that q!F is itself n-homogeneous, it will suffice to show that when the codomain is stable, n-
homogeneous is preserved by countable colimits. The fact that n-reducedness is preserved by colimits
is immediate by the fact that colimits of functors can be computed pointwise and the fact that a
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colimit of a diagram with 0 at every vertex is clearly 0. For n-excisiveness, this follows from the fact
that Pn is left exact by lemma 1.2.7, which in a stable category is equivalent to right exact (see 1.1.4.1.
in [21]) and the fact that Pn preserves sequential colimits. Indeed, this allows us to conclude that
countable colimits are preserved by Pn (by 4.2.3.12. in [20]), which directly implies that n-excisiveness
is preserved by countable colimits. In particular, n-homogeneity is preserved by colimits over a BΣn

shaped diagram. All of this means that we can restrict the adjunction ϕ ⊢ cr(n) in order to obtain an
adjunction between n-homogeneous functors and symmetric in n-variable multilinear functors.
We will now show that this adjunction is in fact an adjoint equivalence, which will prove the desired
claim. We already showed in lemma 2.2.5 that cr(n) is a conservative functor, it isn’t hard to see this
reduces showing the equivalence to showing that the unit η : Id → cr(n) ◦ϕ is an equivalence. We
can show this pointwise, i.e. for a specific functor show that we have an equivalence F → cr(n) ϕ(F ),
we can show this for the underlying functors Cn → D, i.e we want to show F → crn ϕ(F ). We will
allow ourselves the mild abuse of notation of writing F for the functors out of C(n) and the underlying
functors out of Cn. Now recalling that the cross effect is defined via a limit, and that in a stable
category finite limits commute with colimits, because in presence of a terminal object all finite limits
can be constructed from pullbacks, which obviously commute with colimits in the stable case, we see
that crn ϕ(F ) ≃ crn(F ◦∆)hΣn . By lemma 2.2.7, this is equivalent to (⊕σ∈Σn

Red(F σ))hΣn , but as F
is reduced, and the action of Σn is by permuting the factors, it isn’t hard to see that this is equivalent
to F .
This is almost what we wanted to show, one still needs to observe that the unit η realizes this
isomorphism. This follows from comparing definitions, and so we don’t detail this here.

2.3 Equivalence of certain categories of multilinear functors

In this section we complete the final step in order to formulate and understand the definition of the
nth derivative of a functor. A key step in this procedure is that we define an object corresponding to
the first derivative prior to defining the nth derivative in full generality. Sadly, for us, the connection
won’t be as strong as in classical calculus, with the nth derivative simply an iterated application of
the first, however this idea is pursued in [7].
Another key idea which we see the first hints of in this section, but will not at all pursue further, is
that when defining PnF or the derivatives of F , leaving the domain and codomain unchanged isn’t
the most natural choice. Indeed, for example for P1F , as this functor forcibly identifies pushouts with
pullbacks, one might as well force this on the level of the domain and codomain. This idea is pursued
in full in [15].
Before getting into the mathematics of this section, we inform the reader that the language of stable
categories will be especially used in this section, and so one should be prepared to skimming through
chapter 1 of [21].

The light at the end of this particular tunnel is the following result, which will be the final ingredient
in defining the nth derivative of a functor.

Theorem 2.3.1. (Proposition 6.2.3.21. and Corollary 6.2.3.22. in [21]) Let {Ci}i∈I be a finite
collection of pointed differentiable category and let D be a differentiable category. Then the construction
f 7→ Ω∞

D ◦ f ◦
∏
i∈I Σ∞

Ci
defines an equivalence ϕ : Exc⋆(

∏
i∈I Sp(Ci), Sp(D))→ Exc⋆(

∏
i∈I Ci,D).

The subscript ⋆ indicates that we are considering reduced functors which preserve sequential col-
imits. There are two ingredients with relatively high investment needed for the proof of the above
result. First we will need first derivatives, which is done in §2.3.1. Second we will need to define the
suspension functor, which is done in §2.3.2. Assuming the material developed in those subsubsections,
the only missing ingredient before proving the above result is the following neat lemma.

Lemma 2.3.2. (Lemma 6.2.3.26. in [21]) Let C be a pointed differentiable category with finite colimits,
and let E ⊂ Sp(C) be a stable subcategory which contains the image of Σ∞

C : C → Sp(C). If E is closed
under sequential colimits, then E = Sp(C).
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Proof. It isn’t hard to explicitly observe that the derivative of IdC can be taken to be IdSp(C). Now
applying the adjunction Σ∞ ⊣ Ω∞ to the this statement yields that the counit map Σ∞

C ◦Ω∞
C → IdSp(C)

is equivalent to the map Σ∞
C ◦ Ω∞

C → P1(Σ∞
C ◦ Ω∞

C ). In other words, the identity is the 1-excisive
approximation to Σ∞

C ◦ Ω∞
C , which implies the following by an explicit computation of P1:

IdSp(C) ≃ lim−→
n

Ωn
Sp(C) ◦ Σ∞

C ◦ Ω∞
C ◦ Σn

Sp(C).

This means that each spectrum object X can be expressed as lim−→n
Ωn

Sp(C) ◦Σ∞
C (X(Sn)). As E contains

the essential image of Σ∞, is closed under Ωn
Sp(C) (by definition of being a stable subcategory), and is

closed under sequential limit, we may conclude that E must contain X. This proves the claim.

We may now move on to the proof of the main result.

Proof. We first prove that precomposition by Σ∞
Ci

induces an equivalence ϕ : Exc⋆(
∏
i∈I Sp(Ci),D)→

Exc⋆(
∏
i∈I Ci,D). In calling this map ϕ we are mildly abusing notation, but this shouldn’t cause

any confusion. We can work one variable at a time, thus reducing to proving that (Σ∞
C )∗ = ϕ :

Exc⋆(Sp(C),D)→ Exc⋆(C,D) is an equivalence. We can write this functor as the composition

Exc⋆(Sp(C),D)→ Fun⋆(Sp(C),D) ϕ−→ Fun⋆(C,D)

followed by an appropriate corestriction. Each of the functors above are right adjoint, and so the
following composition of left adjoin adjoints assemble into an adjunction for the composite

Exc⋆(Sp(C),D) P1←− Fun⋆(Sp(C),D) Ω∞
←−− Fun⋆(C,D).

This functor can be restricted, so that the whole adjunction restricts to

Exc⋆(C,D) ⊤ Exc⋆(Sp(C),D)

ψ

ϕ

.

Our goal is to promote this adjunction to an adjoint equivalence. Fix some 1-excisive reduced functor
preserving sequential colimits F . Notice that ψ(F ) = Ω∞◦∂F , as can be seen by inspecting the proof of
proposition 2.3.5. Our first step will be showing that ψ is fully faithful, which can be done by showing
that the unit map η : F → ϕ ◦ ψ(F ) = Ω∞

D ◦ ∂F ◦ Σ∞
C is an equivalence. This can clearly be verified

objectwise, so we fix an object C and try to prove that ηC : F (C)→ ϕ ◦ ψ(F ) = Ω∞
D ◦ ∂F ◦Σ∞

C (C) is
an equivalence.
We introduce some notation, namely for T a singleton we abbreviate LTC (defined in corollary 2.3.7)
to LC and similarly for LTD. Notice these functors are in fact 1-excisive approximation. In definition
2.3.9 we defined functor F+ for any surjection q : S → T , which in the case where q : S → T is just
the identity of a singleton is simply post-composition by F . Also recall from subsubsection 2.3.2 that
we have a functor Σ∞

C : C → Fun∗(Sfin
∗ , C), which is a left adjoint to evaluating at S0. Notice that

Σ∞
C ≃ LC ◦ Σ∞

C , in particular we have a map Σ∞
C → Σ∞

C which is an equivalence after applying LC .
Using proposition 2.3.11, we can compute the derivative of F at Σ∞

C C explicitly as

∂F (Σ∞
C C) ≃ LDF

+(Σ∞
C C).

Now post-composing with the map induced by Σ∞
C → Σ∞

C , we obtain a map LDF
+(Σ∞

C )→ LDF
+(Σ∞

C C),
which is an equivalence by 2.3.12.
By remark2.3.8, we know how to compute LDF

+(Σ∞
C C). At a specific object X we have

LDF
+(Σ∞

C C)(X) ≃ lim−→
n

Ωn
D(F+(Σ∞

C (C))(ΣnX)).
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In particular,for X = S0, recalling proposition 1.2.6 and using that Σ∞
C is a left adjoint, so commutes

with Σn, we get
Ω∞

D ◦ ∂F ◦ Σ∞
C ≃ lim−→

n

Ωn
D ◦ F (Σn

CC) ≃ P1F (C).

Under this equivalence, the map ηF is the natural map F → P1(F ), which is an equivalence as F is
1-excisive. Now, to show that ϕ, ψ are mutually inverse, it suffices by a sufficiently simple argument
to show that ϕ is conservative.
Take a morphism β : f → g be a morphism in Exc⋆(Sp(C),D) such that ϕ(β) is an equivalence, we will
show that β is an equivalence. Recall that ϕ(β) is a natural transformation f ◦Σ∞

C → g ◦Σ∞
C . We may

assume that D is stable by invoking proposition 1.4.2.22. in [21], which says that post composing with
Ω∞ gives an equivalence Exc∗(C,Sp(D))→ Exc∗(C,D) is an equivalence. Our goal is now to show the
category E ⊂ C such that βX : f(X)→ g(X) is an equivalence is in fact all of C. By assumption that
ϕ(β) is an equivalence E contains the essential image of Σ∞

C , and so by the lemma it suffices to show
that E is closed under sequential limits, fibers and cofibers. Closure under sequential colimits follows
from the fact that f, g commute with sequential colimits. The fact that E is closed under fiber and
cofiber sequences is because f, g send pushouts to pullbacks, and because all categories involved are
stale implies f, g preserve pushouts and pullbacks, in particular fibers and cofibers. This completes
the proof.

2.3.1 First derivatives of functors

We now move on to the first definition of this section, the derivative of a functor F : C → D, which
will a an appropriate lift to a functor Sp(C) → Sp(D). This leads the way to the intuition that the
stabilization of an ∞-category is analogous to the tangent space of a manifold, being the appropriate
domain/codomain of the differential. This intuition is made formal in [2].

Definition 2.3.3. (6.2.1.1. in [21]) Let {Ci}i∈I be a collection of categories admitting finite limits
and D another such category. Given a pair of functors F : ∏

I Ci → D and f : ∏
I Sp(Ci)→ Sp(D), we

say that a natural transformation α : F ◦∏
I Ω∞

Ci
→ Ω∞

D ◦ f exhibits f as a derivative of F if

(i) the functor f is multilinear and

(ii) for any other multilinear functor g : ∏
I Sp(Ci) → Sp(D), precomposition by α induces an

equivalence

MapFun(
∏

I
Sp(Ci),Sp(D))(f, g)→ MapFun(

∏
I

Sp(Ci),D)(F ◦
∏
I

Ω∞
Ci
,Ω∞

D ◦ g)

As per usual, the fact that f has a universal property means in so far as it exists, it is well defined
up to equivalence. And so we are justified in writing f := ∂⃗F . In the case where F is a single variable
functor, we will simply write ∂F . Recall that the caveat that being a single variable or multivariable
functor does not depend on F but on how we decide to view F (or more specifically, how we decompose
the domain of F as a product of categories).

Remark 2.3.4. (Remark 6.1.2.8. in [21]) It turns out that the second condition can be replaced by an
equivalent, but easier to check statement. The equivalent formulation is given by::
For any other multilinear functor G : ∏

I Sp(Ci)→ D, precomposition by α induces an equivalence

MapFun(
∏

I
Sp(Ci),D)(Ω∞

D ◦ f,G)→ MapFun(
∏

I
Sp(Ci),D)(F ◦

∏
I

Ω∞
Ci
, G)

This version of the statement follows from repeated application of proposition 1.4.2.22. of [21],
which in our case says that composition with Ω∞

D gives an equivalence Exc∗(∏I Sp(Ci), Sp(D)) →
Exc∗(∏I Sp(Ci),D).
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We have the following general existence result for derivatives, which will be useful, though not
wholly satisfactory as we will require derivatives in other contexts than those provided by this propo-
sition.

Proposition 2.3.5. (Proposition 6.2.1.9. in [21]) Let {Ci}i∈I be a finite collection of categories with
finite colimits, let D be a differentiable category, and F : ∏

i∈I Ci → D a functor which is reduced in
each variable. Then F admits a derivative ∂⃗F : ∏

i∈I Sp(Ci)→ Sp(D).

Proof. This result follows from the alternate characterization of condition (ii) discussed above. Let
F ′ = P(1,...,1)(F ◦

∏
i∈I Ω∞

Ci
), where P(1,...,1) was constructed in subsection §2.1. This functor is mul-

tilinear, so by proposition 1.4.2.2. in [21], this functor is given by Ω∞
D ◦ f for some multilinear f :∏

i∈I Sp(Ci)→ Sp(D). Under this identification, the natural map F ◦∏
i∈I Ω∞

Ci
→ P(1,...,1)(F ◦

∏
i∈I Ω∞

Ci
)

becomes a map α : F ◦∏
i∈I Ω∞

Ci
→ Ω∞

D ◦ f . This map exhbits f as a derivative of F by the fact that
as precomposition by α induces the equivalence on mapping spaces which exhibits P(1,...,1) as a left
adjoint.

We will use this result when defining/proving the existence of Σ∞, and this is the only result of
this subsubsection which we will use in §2.3.2, thus from here on out we may use the existence of this
functor without fearing a circular reasoning.

It will be useful to have an explicit way to compute the derivative of a functor, this is what
will occupy us for the rest of this section. The next definition we need is a certain special functor
LTC : Fun∗(∏t∈T Sfin

∗ , C) → Sp(C) for every differentiable category C and every finite set T . We will
state this definition after some preliminary results.
Recall that finite pointed space admit a smash product ∧ : Sfin

∗ × Sfin
∗ → Sfin

∗ , which by a form of
associativity gives an unambiguous functor ∏

t∈T Sfin
∗ → Sfin

∗ for any finite set T , which we also denote
by ∧. By precomposition this gives a functor Sp(C) → Fun(∏t∈T Sfin

∗ , C), which one might study, in
so far as spectrum objects (see definition A.0.11) and the smash product are natural objects to study.
It turns out this functor can easily be corestricted to Exc∗(∏t∈T Sfin

∗ , C) by well known properties of
this smash product. After corestriction, this map is quite interesting by the following result.

Proposition 2.3.6. (6.2.1.11. in [21]) Let T be a non-empty set and let C be a category with finite
limits. Then precomposition with the smash product induces an equivalence

∧∗ : Sp(C)→ Exc∗(
∏
t∈T
Sfin

∗ , C).

Proof. Choose an index s ∈ T and define the map u : Sfin
∗ →

∏
t∈T Sfin

∗ which is the identity on the
s-component, and is constant equal to S0 in every other coordinate. Precomposition by this map
induces a functor u∗ which clearly has the property that u∗ ◦∧∗ = (∧◦ u)∗ ≃ Id. By 2 out of 3, it will
suffice to show that u∗ is an equivalence, to conclude that ∧∗ is so as well.
This follows from proposition A.0.12 and an appropriately restricted and corestricted currying ad-
junction infinity categories. Indeed, the category Exc∗(∏t∈T Sfin

∗ , C) can be identified with the T -fold
application of Sp and the map u∗ with the T\{s}-fold application of Ω∞.

From this we have the following corollary defining the desired functor LTC .

Corollary 2.3.7. (Corollary 6.2.1.12. in [21]) Let T be a non-empty set and let C be a category with
finite limits. Then precomposition with the smash product induces an fully faithful embedding

∧∗ : Sp(C)→ Fun∗(
∏
t∈T
Sfin

∗ , C),

which admits a left adjoint LTC .

Proof. The equivalence of the above proposition extends to a fully faithful embedding Sp(C) →
Fun∗(∏t∈T Sfin

∗ , C). To see that this functor admits a left adjoint, it suffices to show that the in-
clusion Exc∗(∏t∈T Sfin

∗ , C) → Fun∗(∏t∈T Sfin
∗ , C) admits a left adjoint. This is given by the functor

P(1,..,1) constructed in subsection §2.1.
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Remark 2.3.8. Pondering the proof and recalling the construction of P(1,...,1), we see that Ω∞ ◦ LTC :
Fun∗(∏t∈T Sfin

∗ , C)→ C can be understood more explicitly as

Ω∞ ◦ LTC (F ) = lim−→
n⃗∈ZT

≥0

Ωn⃗F ({Snt}t∈T ) ∈ C.

This calculation will be useful to obtain the desired result.
With this construction in hand, we can define the following model of the derivative of a functor.

Definition 2.3.9. (Construction 6.2.1.14. and a remark between proposition 6.2.1.18. and 6.2.1.19.
in [21]) Let q : S → T be a surjection of non-empty finite sets. For each t ∈ T denote by St the fiber of
q over t. Let Ct be a collection of T -indexed categories with finite limits and let D be a differentiable
category. For every reduced functor F : ∏

t∈T Ct → D denote by F+ : ∏
t∈T Fun∗(∏s∈St

Sfin
∗ , Ct) →

Fun∗(∏t∈T Sfin
∗ ,D) the functor obtained by postcomposition∏

s∈S
Sfin

∗ →
∏
t∈T
Ct

F−→ D.

We define F ′ be the following composition
∏
t∈T

Sp(Ct)→
∏
t∈T

Fun∗(
∏
St

Sfin
∗ , Ct) F+

−−→ Fun∗(
∏
t∈T
Sfin

∗ ,D)
LT

D−−→ Sp(D).

In order for the first map to make sense, we use the equivalence proven above of Sp(C) with Exc∗(∏t∈T Sfin
∗ , C).

Given Xt : ∏
St
Sfin

∗ → Ct for each t, the above composition gives us a functor LTDF+({Xt}t∈T ). Now,
we use counit of the adjunction LTD ⊢ ∧∗ which gives us a map LTD ◦∧∗ ◦F+({Xt}t∈T )→ F+({Xt}t∈T ,
evaluating both sides in (S0, ..., S0) and using that S0 is the monoidal unit and recalling various defi-
nitions gives a natural transformation F ◦

∏
t∈T Ω∞

Ct
→ Ω∞

D ◦ F ′, which we will call α.
Both in the notation F ′ and α, we suppress the dependence on q : S → T , which will be justified as
will show that α expresses F ′ as the derivative of F , and in particular is well defined up to equivalence.

To show that this is indeed an appropriate model for ∂⃗(F ), we need to show it satisfies both
conditions of definition 2.3.3. This is done by the following pair of propositions.

Proposition 2.3.10. (Proposition 6.2.1.18. in [21]) Let {Ct}t∈T be a finite collection of differentiable
categories, D another such category and F : ∏

t∈T Ct → D a functor which is reduced in each variable
and preserves sequential colimits. For every surjection q : S → T , the functor F ′ : ∏

t∈T Sp(Ct) →
Sp(D) of the previous definition preserves countable colimits separately in each variable. In particular,
F ′ is multilinear.

Proof. Multilinearity will follow from stability of the codomain, as then in Sp(D) pushouts are the
same as pullbacks. We will henceforth allow ourselves to omit specifying “separately in each variable”.
To show that F ′ preserves all countable colimits, we start by showing it preserves sequential colimits.
For this we show that each functor in the composition defining F ′ preserves colimits. For convenience
we recall that F ′ is given by

∏
t∈T

Sp(Ct)→
∏
t∈T

Fun∗(
∏
St

Sfin
∗ , Ct) F+

−−→ Fun∗(
∏
t∈T
Sfin

∗ ,D)
LT

D−−→ Sp(D).

The last map preserves all colimits as it is a left adjoint, and the middle map because F does.
The first map does as it is the composition of an equivalence and the inclusion Exc∗(∏St

Sfin
∗ , Ct) →

Fun∗(∏St
Sfin

∗ , Ct), which preserves sequential colimits as Exc∗(∏St
Sfin

∗ , Ct) is always closed under
sequential colimits.
It now follows that F+ preserves countable filtered colimits, because by finality arguments we can
replace filtered diagrams J → C by diagrams of the form N(A) where A is a countable poset (see
statement and proof of 5.1.3.18. in [20]). We can then easily replace A by Z≥0 by replacing by a final
subdiagram, which we are allowed to do by proposition A.0.7. Now it suffices to show that F ′ preserves
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countable coproducts and coequalizers by 4.4.3.2. in [20]. Countable coproducts will be preserved if
finite coproducts are preserved because F ′ preserves sequential colimits. Thus it will suffice to show
that F ′ is right exact.
We now fix every variable but one, i.e. we consider the functor G : X 7→ F ′(X, {Yt}t∈T\{t0}) where
the Yt are fixed. By corollary 1.4.2.14. and 1.1.4.1., to show that G is exact, it will suffice to show
that G maps the zero object to the zero object and that the natural map ΣDG(X) → G(ΣCX) is an
equivalence. The fact that G preserves 0-objects follows immediately from F being reduced. To verify
the other condition, we will need to take a detour to obtain a different formulation of the natural map
ΣDG(X)→ G(ΣCX).
Let q : S → T be the surjection appearing in the definiton of F ′ and choose s0 mapping to t0. Let
U : ∏

s∈S Sfin
∗ →

∏
s∈S Sfin

∗ be the functor which suspends the s0th coordinate, and is the identity on
all the other coordinates. By proposition 2.3.6 properties of the smash product, of suspension of finite
spaces and because ΣSp(D) can be computed pointwise, we may fit U into the following commutative
diagram:

Sp(D) Sp(D)

Exc∗(∏s∈S Sfin
∗ ,D) Exc∗(∏s∈S Sfin

∗ ,D)

ΣSp(D)

−◦U

.

We now define the functor Z : ∏
s∈S Sfin

∗ → D by the following composition

∏
S

Sfin
∗ ≃

∏
t∈T

∏
St

Sfin
∗

∏
t∈T

∧
−−−−−→

∏
t∈T
Sfin

∗
X,{Yt}t∈T \{t0}−−−−−−−−−→

∏
t∈T
Ct

F−→ D.

Now notice that the natural map P(1,..,1)(Z) ◦U → P(1,..,1)(Z ◦U) is an equivalence, because the map
U clearly satisfies the assumptions of lemma 1.2.9. At this point, one might reasonably ask why we
care about this map. Chasing definitions around we see this is in fact the map we are interested in.
In particular, one must notice that suspension in the category of spectrum objects corresponds to
pointwise suspension, i.e.

ΣSp(C)X ≃ X ◦ ΣSfin
∗
.

This concludes the proof.

Proposition 2.3.11. (Proposition 6.2.1.19. in [21]) Let {Ct}t∈T be a finite collection of differentiable
categories, D another such category and F : ∏

t∈T Ct → D a functor which is reduced in each variable
and preserves sequential colimits. For every surjection q : S → T , the natural transformation α :
F ◦

∏
t∈T Ω∞

Ct
→ Ω∞

D ◦ F ′ from the above definition exhibits F ′ as a derivative of F .

Proof. We have a natural map α : F ◦∏
t∈T Ω∞

Ct
→ Ω∞

D ◦ F ′. Since F ′ is multilinear, the same holds
for Ω∞ ◦ F ′, because P(1,...,1) is left adjoint to the inclusion of (1, ..., 1)-excisive functors, we get that
α-factors as

F ◦
∏
t∈T

Ω∞
Ct

α′
−→ P(1,...,1)(F ◦

∏
t∈T

Ω∞
Ct

) α′′
−→ Ω∞

D ◦ F ′.

Using the universal property of P(1,...,1) we see that α′ is an equivalence, so that it suffices to show that
α′′ is an equivalence. We show the isomorphism pointwise, and leave it to the reader to verify that
the equivalence we show is indeed the map α′′. Fix {Xt}t∈T some collection of objects in Sp(C). For
n⃗ ∈ ZS≥0, denote by n⃗t the restriction of n⃗ to St, denoting by |n⃗| the sum of the coordinates, this gives
a map σ : ZS≥0 → ZT≥0 by sending n⃗ to {|n⃗t|}t∈T , we claim that this map is cofinal. This can be seen
using theorem A.0.10, as for each p⃗ ∈ ZT≥0, the category ZS≥0 ×ZT

≥0
ZT≥0,p⃗/ has an initial object given

by p⃗ → σ(k⃗), where k⃗ = {{ks}s∈St}t∈T and we choose an st ∈ St for each t, set kst = pt and ks = 0
otherwise. So in paritcular ZS≥0 ×ZT

≥0
ZT≥0,p⃗/ is contractible. The construction of this initial object

involved some choice, but in fact any choice yields objects which are equivalent up to contractible
choice.
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Now that this is said, the result follows upon pondering the following chain of equivalences, which we
obtain courtesy of remark 2.3.8 and all of the definitions involved:

P(1,...,1)(F ◦ Ω∞
C )({Xt}t∈T )

≃ lim−→
m⃗∈ZT

≥0

Ω|m⃗|
D ◦ (F ◦ Ω∞

C ) ◦
∏
t∈T

Σmt

Sp(C)(Xt)

≃ lim−→
m⃗∈ZT

≥0

Ω|m⃗|
D ◦ (F ◦ Ω∞

C ) ◦
∏
t∈T

(Xt ◦ Σmt

Sfin
∗

)

≃ lim−→
n⃗∈ZS

≥0

Ω|n⃗|
D ◦ (F (ΣntS0)) ≃ Ω∞

D ◦ LTD(F+(Snt)) ≃ Ω∞
D ◦ F ′({Xt}).

When applying the above result in the proof of the main result of this section, we will need the
following result. When we say F -equivalence, we mean a map whose image is an equivalence.
Proposition 2.3.12. (Proposition 6.2.1.20. in [21]) Let {Ct}t∈T be a finite collection of differ-
entiable categories, D another such category and F : ∏

t∈T Ct → D a functor which is reduced
in each variable and preserves sequential colimits. For every surjection q : S → T , the functor
F+ : ∏

t∈T Fun∗(∏s∈St
Sfin

∗ , Ct)→ Fun∗(∏t∈T Sfin
∗ ,D) defined in the above definition carries

∏
t∈T L

St
Ct

-
equivalences to LSD-equivalences.

Proof. Suppose we are given maps {αt : Xt → Yt}t∈T which seen as a single map in ∏
t∈T Fun∗(∏s∈St

Sfin
∗ , Ct)

is a ∏
t∈T L

St
Ct

-equivalences. To help clear up notation, denote by P1⃗ the left adjoint to the inclu-
sion Fun∗(∏s∈S Sfin

∗ ,D) → Exc∗(∏s∈S Sfin
∗ ,D) and denote by P t1⃗ the left adjoint to the inclusion

Fun∗(∏s∈St
Sfin

∗ , Ct) → Exc∗(∏s∈St
Sfin

∗ , Ct). Using this notation and recalling the definition of LSt
Ct

we see that our condition on the {αt} is equivalent to the requirement that P1⃗(αt) is an equiv-
alence. And similarly, we may restate what we want to show as showing that the induced map
P1⃗F

+({Xt})→ P1⃗F
+({Yt}) is an equivalence.

Using proposition 1.2.6, the definition of F+ and the fact that an equivalence of functors can be
verified pointwise, we reduce to showing that

γ : lim−→
m⃗∈ZS

≥0

Ω|m⃗|F ({Xt({ΣmsKs}s∈St)}t∈T )→ lim−→
m⃗∈ZS

≥0

Ω|m⃗|F ({Yt({ΣmsKs}s∈St)}t∈T )

is an equivalence, where Ks is some fixed collection of finite spaces. For n⃗ ∈ ZS≥0, denote by n⃗t the
restriction to St. We can fit γ in the following commutative diagram

lim−→m⃗∈ZS
≥0

Ω|m⃗|
D F ({Xt({ΣmsKs}s∈St)}t∈T ) lim−→m⃗∈ZS

≥0
Ω|m⃗|

D F ({Yt({ΣmsKs}s∈St)}t∈T )

lim−→n⃗,m⃗∈ZS
≥0

Ω|m⃗|
D F ({Ωn⃗t

Ct
Xt({Σms+nsKs}s∈St)}t∈T ) lim−→n⃗,m⃗∈ZS

≥0
Ω|m⃗|

D F ({Ωn⃗t
Ct
Yt({Σms+nsKs}s∈St)}t∈T )

lim−→n⃗,m⃗∈ZS
≥0

Ω|m⃗|+|n⃗|
D F ({Xt({Σms+nsKs}s∈St)}t∈T ) lim−→n⃗,m⃗∈ZS

≥0
Ω|m⃗|+|n⃗|

D F ({Yt({Σms+nsKs}s∈St)}t∈T )

γ

γ′

γ′′

.

A similar cofinality argument to the one made explicit in the proof of the previous proposition shows
that the vertical compositions are equivalences. So that the map γ we are interested in is a retract of
γ′, so it suffices to show that γ′ is an equivalence. Now because F commutes with sequential colimits
by assumption and ΩD because D is differentiable, it suffices to show that the maps

lim−→
n⃗,m⃗∈ZS

≥0

{Ωn⃗t
Ct
Xt({Σms+nsKs}s∈St)}t∈T → lim−→

n⃗,m⃗∈ZS
≥0

{Yt({Σms+nsKs}s∈St)}t∈T

are equivalences. But this follows by assumption on αt and proposition 1.2.6.
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2.3.2 The suspension functor

In this subsubsection we define a highly expected functor, a left adjoint to Ω∞. When it exists, we’ll
call this the infinite suspension, and denote it by Σ∞

+ , omitting the + subscript if C is pointed. Just
like as for Ω∞, we will sometimes use the category whose suspension functor it is as a subscript, i.e.
the adjoint to the functor Ω∞

C : Sp(C)→ C might be denoted by Σ∞
+,C or Σ∞

C .

We will prove the existence of Σ∞
+ only in a case of interest to us, though there are others (see for

example proposition 1.4.4.4. in [21] for the case of C a presentable category).
Proposition 2.3.13. (6.2.3.16. and 6.2.3.19. in [21]) Let C be a category with finite colimits and
a final object and let θ : Fun∗(Sfin

∗ , C) → C denote evaluation at S0. Then θ admits a left adjoint
Σ∞

C : C → Fun∗(Sfin
∗ , C).

If in addition C is differentiable, then Σ∞
C = P1(Σ∞

C ) is a left adjoint to Ω∞
C .

Proof. The functor Ω∞ factors as Sp(C) → Fun∗(Sfin
∗ , C) θ−→ C, so if we find a left adjoint for θ, a left

adjoint to Ω∞ is given by post composing this with the left adjoint to the other map, which is P1 by
theorem 1.2.1. So it suffices to prove the first half of the above statement. We will do this by explicitly
constructing Σ∞ .
Let FunRex(SFin, C) be the subcategory of Fun(SFin, C) consisting of the right exact functors, i.e. the
maps which are left Kan extensions of their restriction to the one point space ∗.
Applying proposition A.0.5 we get that the restriction FunRex(SFin, C) → Fun(∗, C) is a trivial fi-
bration. This map can clearly be identified with the map FunRex(SFin, C) → C given by evaluation
at a one point space ∗. Choose a section of this map, which we denote by f•, mapping an object C
to fC . We turn this into a functor to Sfin

∗ by mapping a pointed space K to fC(K) ⊔C ∗ where ∗ is
a final object of C and the map C → fC(K) is given by applying fC to the unique map to the base
point ∗ → K. We denote the functor C → Fun∗(Sfin

∗ , C) by Σ∞.
For each C ∈ C, we have a canonical equivalence θ(Σ∞) = fC(S0) ⊔ ∗ ≃ C ⊔C ∗. This equivalence
can easily be used to construct a map η : Id → θ ◦ Σ∞. We will show that this η is the unit of an
adjunction. For this, fix a C ∈ C and a reduced functor g : Sfin

∗ → C, we want to show that the
following composition is an equivalence

MapFun(Sfin
∗ ,C)(f+

C , g)→ MapC(f+
C (S0), g(S0))→ MapC(C, g(S0)).

The first map is given by applying θ and the second is precomposition by η.
Now notice that if A : Sfin

∗ → C is the constant functor equal to A, then A is left Kan extension of its
restriction to ∗ ∈ Sfin

∗ which is a zero object. In particular, the mapping space MapFun(Sfin
∗ ,C)(A, g) is

contractible by the left Kan extension adjunction and because g is reduced. Denoting by U : Sfin
∗ →

SFin the forgetful functor we can consider the following pushout:

C ∗

fC ◦ U f+
C

!

and apply MapFun(Sfin
∗ ,C)(−, g), which because the top row consists of contractible object (and thus is

an equivalence) and because equivalences are stable under pushout yields an equivalence

MapFun(Sfin
∗ ,C)(f+

C , g)→ MapFun(Sfin
∗ ,C)(fC ◦ U, g).

Now using that U is left adjoint to the functor (−)+ which freely adjoins a base point, we may replace
MapFun(Sfin

∗ ,C)(f+
C , g) by MapFun(Sfin

∗ ,C)(f, g ◦ (−)+). Chasing around some definitions, we see the map
we want to show is an equivalence is the map obtained by evaluation at ∗

MapFun(Sfin
∗ ,C)(fC , g ◦ (−)+)→ MapC(C, g ◦ (−)+(∗)).

But this in fact follows from the adjunction definition that fC is a left Kan extension of its restriction
to ∗. This proves the proposition.
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2.4 The definition

With all of these results, we are finally ready to define the derivative of a functor. Let C be a pointed,
differentiable category with finite colimits and let D be a pointed differentiable category. These are
the necessary assumptions so that we can freely use all the results developed thus far, which will in
particular allow us to define the nth derivative ∂nF ∈ Exc⋆(Sp(C)n, Sp(D)).
First, by theorem 1.2.1, we have n-excisive approximations PnF , which in classical calculus correspond
to degree n Taylor polynomials. Substracting the degree n − 1 approximation from the degree n

approximation yields a term of the form f (n)(a)
n! xn, which in our case is done by taking the fiber

of the natural map PnF → Pn−1F , which we denote by DnF . By theorem 1.3.2 (and the fact
that ΩD preserves finite limits), this fiber is n-homogeneous. Now taking the nth cross effect yields
a symmetric in n-variables linear functor by theorem 2.2.1. In the classical picture, the functor
cr(n)(DnF ) corresponds to f (n)(a)x1 · · ·xn. The final step is to choose a specific a, i.e. to point
our discussion. This is done by theorem 2.3.1, which fits cr(n)(DnF ) into the following commutative
diagram

Sp(C)n Sp(D)

Cn D

Ω∞
DΣ∞

C
cr(n)(DnF )

.

We define the top map to be ∂nF , which is a symmetric multilinear functor, and hopefully the above
paragraph is enough to convince the reader that this is a reasonable definition.

Following the introduction to section 6.3.3 in [21], we can observe by multilinearity (or more
specifically by corollary 1.4.4.6 in [21]) of ∂nF that in the case C is a category such that Sp(C) is the
category of spectra (in spaces), then ∂nF is fully determined by the image of (S,S, ...,S) ∈ Sp. This
in particular implies that in this case, the derivatives of a functor assemble into a symmetric sequence
of spectra.

In part II of this project, we will discuss some of the prerequisites need to understand the description
of the symmetric sequence obtained from Id : S → S given by Ching in [6]. We leave it to the reader
to recall that all the necessary assumptions to apply Goodwillie calculus are satisfied by the identity
functor on spaces.
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3 Various tangents to understand Ching’s article

In this section, we gather a collection of tangents which together allow a reader with working knowl-
edge of algebraic topology (say at the level of Hatcher’s eponymous book [14] and able to work with
spectral sequences coming from an exact couple) and with sufficient categorical maturity to read
Ching’s paper [6] with relative ease. We do not claim that what we write here removes any work
from reading the paper [6], simply that we discuss enough prerequisites to shed some light on some
concepts used, thus turning various black boxes gray. Throughout this part of the project, whenever
we say “Ching’s paper” without specifying further, we mean [6].

When we do enriched category theory, will always implicitly assume the base V to be a closed
symmetric monoidal category which is complete and cocomplete. For ease of convenience, we will call
such categories Bénabou cosmoi, as suggested by [25]. The main examples to keep in mind are one’s
favourite category of spaces and/or of spectra. The enriched categories we will be working with are
those which are used in Ching’s paper, whose definition we recall here.

Definition 3.0.1. (1.10 in [6]) Let (V,∧, I) be a Bénabou cosmos, we call (M,⊗,1, d) a symmetric
monoidal V-category if (M,⊗,1) is itself symmetric monoidal, which is also:

(i) enriched,

(ii) tensored (which unless specified otherwise we denote by (−) · • : V ×M→M) over V,

(iii) and cotensored (which unless specified otherwise denote by •(−) : Vop ×M→M) over V.

To be clear, in the tensoring and in the cotensoring, the • is a placeholder for the object coming from
M and the (−) is a placeholder for the object coming from V.
The final piece of data is the map d, which is required to be a natural transformation d : (X ∧ Y ) ·
(C ⊗ D) → (X · C) ⊗ (Y · D), with X,Y ∈ V and C,D ∈ M satisfying some compatibility axioms
which we do not recall.

Much of what we do can be done in greater generality than the above context, and the interested
reader may refer to our sources to see which part of the above structure is really necessary. We will
always work with categories as in the above definition essentially for the sake of homogeneity.

3.1 (Co)end calculus

In this subsection we give a brief introduction to (co)end calculus, following [19]. The main goal for
us, is to give some familiarity with this somewhat more specialized notion of category theory. More
specifically we will use the coend to discuss geometric realization of simplicial sets, which we hope will
give the intution of the connection between coends and geometric realization. This intution will also
be reinforced by understanding of how to tensor functors, which we will also discuss.

We first simply state the necessary definition and basic results required to work with (co)ends.

Definition 3.1.1. (Definition 1.2, 1.5 and 1.6 in [19])

(i) Given two functors P,Q : C × Cop → D a dinatural transformation between them, which we
depict as an arrow α : P ..−→ Q is a collection of morphisms αc : P (c, c)→ Q(c, c) such that given
any morphism f : c→ c′ in C the following diagram commutes

P (c′, c′) Q(c′, c′)

P (c′, c) Q(c, c′)

P (c, c) Q(c, c)

αc′

Q(f,c′)P (c′,f)

P (f,c)

αc

Q(c,f)

.
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(ii) Let P : C × Cop → D. A wedge is a dinatural transformation d
..−→ P where d is the constant

functor which on objects sends everything to d in D and sends every morphism to the appropriate
identity. Dually a cowedge is a dinatural transformation to a functor of the forme d.

(iii) The end of a functor P : C × Cop, denoted by
∫
c∈C P is a terminal wedge. Dually a coend is an

initial cowedge and is denoted by
∫ c∈C P .

Note that we might allow ourselves to denote (co)ends in similar ways, but potentially suppressing
some information, for example by

∫
C P or

∫
c P . We also observe that (co)ends need not exist in general,

and we will be tacitly assuming their existence whenever we use the notation. At this point we may
introduce a first example of a (co)end.
Example 3.1.2. Consider an object in the category G − Set−G, i.e. a set with a left and a right
G-action. These can be viewed as functors BG× BGop → Set, where BG is the one object category
corresponding to the group G. Given this categorical description of a G − Set−G, it is natural to
wonder what the end and coend of such an object is.
One can verify that the end of a G − Set−G X is the subset where the two actions agree and the
coend is the quotient of X by the relation gx ∼ xg.

We now state some fundamental results about coends without proof, as the proofs are just ver-
ification of universal properties. For the first of these results, we need the definition of TW(C), the
category of twisted arrows in C whose objects are morphisms in C and whose morphisms from a→ b
to c→ d are commutative squares of the form

a b

c d

.

We also need to notice that there is an obvious functor TW(C)→ C × Cop.

Proposition 3.1.3. (Section 1.5. in [19]) The end
∫
c∈C P can be realized as the limit of P restricted

to TW(C). Dually, a coend can be realized as the colimit of the same restriction.

This characterization is useful in order to painlessly transfer results about (co)limits to (co)ends.
Another useful characterization as a (co)limit is given by the following result, which can have the
added advantage of being computationally useful.

Proposition 3.1.4. (Remark 1.23. in [19]) The end
∫
c∈C P can be realized as

eq( ∏
c∈C F (c, c) ∏

(c→c′)∈C F (c, c′)
F∗

F ∗

).

Dually the coend
∫ c∈C can be realized as

coeq( ⊔c∈CF (c, c) ⊔(c→c′)∈CF (c, c′)
F∗

F ∗

).

We can use the above characterization to compute another natural end. This example may also
convince the reader that this construction is more than abstract nonsense (or at the very least that it
is relevant abstract nonsense for readers who already care about abstract nonsense).
Example 3.1.5. (Theorem 1.29. in [19]) Consider F,G : C → D two functors, we then have a natural
functor Hom(F (−), G(−)) : C × Cop → Set. The end of this functor is Nat(F,G).

This example gives a different intution for (co)ends than the one we wish to develop as assem-
bling local information (Hom(F (c), G(c′))) into global information (Nat(F,G)). This perspective has
a suprising realization in physics, for which we invite the reader to consult [9].

The following results give us some of the fundamental computational tools for dealing with
(co)ends.
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Proposition 3.1.6. (Theorem 1.26. in [19]) Continuous functors D → E preserve ends. Dually
cocontinuous functors preserve coends.

Proposition 3.1.7. (Remark 1.16. in [19])

(i) (The freshman’s dream for (co)ends) For a natural transformation η : F ⇒ G between functors
with domain C × Cop. There is an induced map

∫
c∈C η :

∫
c∈C F →

∫
c∈C G. Given two composable

natural transformations between such functors σ, τ we have the relationship∫
c∈C

τ ◦ σ =
∫
c∈C

τ ◦
∫
c∈C

σ.

The same formula holds for coends.

(ii) (Fubini’s theorem for (co)ends) Given a functor F : C × Cop ×D×Dop → E we have three ways
of forming the (co)end, these all turn out to be equal, i.e.∫

C×D
F =

∫
C

∫
D
F =

∫
D

∫
C
F.

With these basics in hand, we give an application to the existence of Kan extension, which we
prove as the method is emblematic of the kind of abstract non-sense used when dealing with (co)ends.
For X a set and c an object in a cocomplete category, we denote by X · c the natural tensoring over
sets.

Theorem 3.1.8. (Section 2.1. in [19]) Let E be a cocomplete category, F : C → D a functor whose
domain is small. This induces a map F ∗ : Fun(D, E)→ Fun(C, E) by precomposition, which admits a
left adjoint LanF : Fun(C, E)→ Fun(D, E). This left adjoint is given by mapping G : C → E to∫ c

HomD(Fc,−) ·Gc.

Proof. The proof follows by showing the adjunction isomorphism on Hom-sets by abstract nonsense,
using the tools stated above starting with the end-description of Nat(F,G):

Nat(
∫ c∈C

HomD(Fc,−) ·Gc,H) ∼=
∫
d∈D

HomD(
∫ c∈C

HomD(Fc, d) ·Gc,Hd).

Then we can use the fact that the Hom functors sends coends in the first vatiable to ends, because of
the corresponding result that it sends colimits to limits:∫

d∈D
HomD(

∫ c∈C
HomD(Fc, d) ·Gc,Hd) ∼=

∫
d∈D

∫
c∈C

HomD(HomD(Fc, d) ·Gc,Hd).

Now by definition of tensors we get∫
d∈D

∫
c∈C

HomD(HomD(Fc, d) ·Gc,Hd) ∼=
∫
d∈D

∫
c∈C

HomSet(HomD(Fc, d),HomE(Gc,Hd)).

Next we use the Fubini theorem for ends and the end description of natural transformation to get∫
d∈D

∫
c∈C

HomSet(HomD(Fc, d),HomE(Gc,Hd)) ∼=
∫
c∈C

Nat(HomD(Fc,−),HomE(Gc,H−)).

We then apply the Yoneda lemma to see that∫
c∈C

Nat(HomD(Fc,−),HomE(Gc,H−)) ∼=
∫
c∈C

HomE(Gc,HFc).

And by a final application of the end characterization of natural transformation this is Nat(G,HF ) =
Nat(G,F ∗H). This concludes the proof.
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This can be used to prove the “nerve-realization paradigm”, which is the following proposition.
We denote the Yoneda embedding by よ : C → Fun(Cop,Set) (the character よ is read as Yo).

Theorem 3.1.9. (proposition 3.2. in [19]) Let ϕ : C → D be a functor from a small to a cocomplete
category, and let Rϕ = Lanよϕ : Fun(Cop,Set) → D denote the left Kan extension of ϕ along the
Yoneda embedding. This functor is a left adjoint.

Proof. For the duration of this proof we denote the category Fun(Cop,Set) by C. Because D is
cocomplete it is tensored over sets so that we can use the previous result describing left Kan extensions.
So the result follows by the following chain of abstract nonsense isomoprhisms:

HomD(Lanよϕ(P ), d) ∼= HomD(
∫ C

HomC(よ(c), P ) · ϕ(c), d) ∼=
∫

C
HomD(HomC(よ(c), P ) · ϕc, d))

∼=
∫

C
HomSet(HomC(よ(c), P ),HomD(ϕc, d)) ∼=

∫
C

HomSet(Pc,HomD(ϕc, d)) ∼= Nat(P,Hom(ϕ(−), d)).

This concludes the proof

We denote this right adjoint mapping d to the presheaf c 7→ Hom(ϕ(c), d) by Nϕ and call it the
D-coherent nerve. We also call Rϕ the D-realization functor.

In order to relate the above result to known material, the reader should replace C with the category
∆ of finite ordered sets with order preserving maps (or rather a small category equivalent to this one),
D the category of topological spaces and ϕ : ∆→ Top to be the natural map which on objects sends
an n-element set to the standard n-simplex.
Now one can observe that the realization part of a “nerve-realization paradigm” admits a nicer de-
scription if we add a little bit of language.

Definition 3.1.10. (Section 4.1. in [24]) Suppose V is a Bénabou cosmos, M a symmetric monoidal
V-category and D a small category. Let F : D →M and G : Dop → V be functors. Then, in so far as
the following coend exists, we define the following “tensor products of functors”

G⊗D F =
∫ d∈D

G(d) · F (d).

This is an object in M.

Example 3.1.11. This allows us to rewrite Rϕ as Hom(よ(−),−) ⊗C ϕ. Specializing to the case of
simplicial objects, i.e. in the case where C = ∆, we see that specifying a cosimplicial object ∆• : ∆→ V
allows us to define a realization functor which sends a simplicial object P to Hom(よ(−), P ) ⊗∆ ∆•,
which by the Yoneda lemma can also be rewritten as P (−) ⊗∆ ∆•. This justifies writing realization
of simplicial objects simply as a functor −⊗∆ ∆• :Mop →M.

We justify the terminology of “tensor product” by the following example, which shows that it is
indeed a generalization of the classical tensor product.
Example 3.1.12. (Example 3.6. in [19]) Any ring R can be realized as a one object category enriched
in abelian groups, denote the corresponding category by BR. Then a left R-module can be seen as a
functor M : BR → Ab and a right R-module as a functor N : BRop → Ab. We will in fact not need
the fact that BR is Ab enriched, and as we only discussed the unenriched version of the theory, we
will forget the enrichment of BR.
The category of abelian groups is a symmetric monoidal Ab category, so the functor tensor product
M⊗BRN makes sense. It isn’t hard to verify that this returns the classical tensor product of R-modules

All of the above discussion serves to see why a tensor product of functors can be thought of as
both a generalization of geometric realization and of the ordinary tensor product, in particular this
should give sufficient intuition for the following definition from Ching’s paper.
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Definition 3.1.13. (Definition 4.4 in [6]) Let P be a reduced operad in a symmetric monoidal T -
category, where T is the category of topological spaces, then the bar construction B(P ) is the following
symmetric sequence

B(P )(A) = w(−)⊗T (A) PA(−).

For the exact definition we let the reader consult Ching’s paper. The intuition is based on what
we have said so far and the connection between operads and trees. The object A is a finite set, seen
as an object in the core of the category of finite sets. The category T (A) is a certain category of trees
whose leaves are labeled by A. The functor w(−) is a natural geometric realization of the trees being
considered and the functor PA(−) is a natural T (A)-shaped diagram built using P and A, and so is
the analogue of a simplicial set in “ordinary geometric realization”. The B stands for bar construction,
which we discuss in the next subsection.
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3.2 The bar construction

The bar construction is a relatively general way to “fatten” an object, which is proven to be useful
in homotopy theory. We compare the definition given in Riehl’s book [24] and in the paper [27] by
Ruoqi Zhang, in particular giving the connection with the simplicial bar construction of an operad.
Along with proposition 4.13. in Ching’s paper, this relates general bar constructions with the bar
construction on which Ching constructs a cooperad structure. All of this material can of course be
dualized, we will not explicitly do this.

We immediately state the enriched bar construction, returning definition 4.2.1 in [24] when we
consider Set-enriched categories.

Definition 3.2.1. (Definition 9.1.1. in [24]) Let (V,∧, I) be a Bénabou cosmos, D a V-enriched
category, where we denote the internal Hom by MapD and M a symmetric monoidal V-category. Let
F : D →M and G : Dop → V be V-functors. Then we define B•(G,D, F ) the enriched simplicial bar
construction to be the simplicial object in M whose n-simplices are given by⊔

D0,...,Dn∈D
(GDn ∧MapD(Dn−1, Dn) ∧MapD(Dn−2, Dn−1) ∧ ... ∧MapD(D0, D1)) · FD0.

The simplicial structure is given in a familiar way, where the degeneracy maps duplicate Di using the
map I → MapD(Di, Di), the inner face maps are given using composition and the outer face maps by
evaluation maps. We let the interested reader consult [24] for details.

Definition 3.2.2. (Definition 9.1.5. in [24]) In the presence of a cosimplicial object ∆• : ∆ → V,
with the same notation as in the previous definiton, we define the enriched bar construction by

B(G,D, F ) = B•(G,D, F )⊗∆ ∆•.

In spite of sharing the same name, the simplicial bar construction of definition 4.11 in Ching’s
paper bears no obvious resemblance to the above definition. More generally, while reading about the
bar construction online, one stumbles regularly on “bar constructions” which resemble definition 4.11
in Ching’s paper more than they do the above. Here is a definition of this alternative bar construction
in relatively broad generality.

Definition 3.2.3. (Construction 5 in [27]) Let (V,⊗, I) be a not necessarily symmetric monoidal
category, let G be a monoid in this category, M a right G-object and N a left G-object. The (monoidal)
simplicial bar construction B•(M,G,N) for the triple (M,G.N) is the simplicial V-object whose q-
simplices is the object M ⊗G⊗q ⊗N . The interior face maps are given by internal multiplication, the
first (resp. last) face maps by the G action on M (resp. on N) and the degeneracy maps are given by
inserting a copy of G using the unit map I → G.
Just as for the simplicial bar construction defined above, in the presence of a cosimplicial object
∆◦ : ∆→ V, we can define the (monoidal) bar construction B(M,G,N) = B•(M,G,N)⊗∆ ∆•.

A special case of the above construction which is particularly common is when
(V,⊗, I) is (Fun(C, C), ◦, IdC). In this case, the term “monadic bar construction” is sometimes used.
In this case, we may want the left module to be a T -algebra, i.e. an object X ∈ V with a natural
transformation η : TX → X. This can be recovered as a special case of the above by letting N be the
functor X ⊗− and taking as the structure map the induced map TX ⊗− η⊗−−−−→ X ⊗−.

The above constructions bears a passing resemblance to the bar construction discussed in [24],
though it might not be immediately clear in what sense one generalizes the other.
The simplicial monoidal bar construction B•(M,G,N) can be described via the simplicial enriched
bar construction of [24] in the case that V is a Bénabou cosmos. In this case, we can view G as a one
object V-enriched category, which we denote by BG and M can be viewed as a functor BG→ V and
similarly N can be viewed as a functor BGop → V.
In reality one might be able to lighten the assumptions on V. The main assumption which cannot be
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removed in an obvious manner is the fact that V needs to be symmetric. So that a priori the non-
symmetric case belongs properly to the monoidal bar construction. On the other hand, it is obvious
that if D is a single object category, then the bar construction of [24] corresponds to a monoidal bar
construction, however the bar construction over more complicated D belongs properly to [24].

The simplicial operadic bar construction, for example as stated in definition 4.11 of Ching’s paper
is now best understood in the context of the monoidal bar construction, but because symmetric se-
quences form a symmetric monoidal category, it can in fact be reformulated in the language of [24].
Ching’s paper also uses a bar construction for reduced operads of chain complexes, whose comparison
with the above general setting is pointed out with remark 9.28 and proposition 9.29 in Ching’s paper,
which redirect the reader to section 4.4 in [8] and theorem 4.1.8.

We want to investigate the bar construction for operads of chain complexes over a field in more
detail, with the goal of studying Koszul duality as our guiding light. We will in particular use this
motivation to study what happens when we try and fiddle the bar construction into being a duality
functor. Note that this is just a heuristic and serves as nothing more than vague motivation. In order
to pursue this we follow [18], trying to motivate the construction via the above general setting, which
we are able to do thanks to section 2.2. of [27]. The connection between the bar construction and
Koszul duality is an important topic, starting in the classical formulation of Koszul duality in chapter
2 and 3 of [18], all the way to modern incarnations such as in section 5.2 of [21] or section 4 of [4]. For
the sake of expositional clarity, instead of detailing the dg-operadic bar construction, we will detail
the simpler case of dg-algebras in the following subsubsection §3.2.1.

3.2.1 Bar construction for dga

Let A be a k-algebra. In order to have a natural bar construction, we need a right A-module M and
a left A-module N . In so far as we want to study A, we would like M and N not to affect the bar
construction too much. As we are tensoring over k, we can achieve this if we could take M = N = k.
Therefore, we assume further that A is an augmented k-algebra.
The bar construction B•(k,A, k) = k ⊗k A⊗q• ⊗k k is a simplicial k-vector space, and in general we
cannot do much better. We could find or define some standard simplices, in order to get access to
geometric realization. However because we are working in an Abelian category, we have another natural
way to work with B•(k,A, k), which is with the following theorem, called the Dold-Kan theorem.

Theorem 3.2.4. (Theorem 8.4.1. in [26] and theorem 10 in [27]) For any abelian category A there
is an equivalence of category

N : A∆op → Ch≥0(A).

This correspondence is given by sending A• to the chain complex which in degree n is
⋂n−1
i=0 ker(di :

An → An−1) and with differential dn. Under this correspondence homotopy groups correspond to
homology groups.
Furthermore, the complex NA∗ is equivalent to two other chain complexes which can be useful. First
is the chain complex A∗ which in degree n is An and with differential ∂n = ∑n

i=0(−1)idi. Second is
the quotient of A∗ by DA∗ which in degree n is generated by the degenerated simplicies, i.e. DA∗ =∑n−1
i=0 Im(si). We call this quotient CA∗.

The chain complex we choose to work with is CB(k,A, k)∗ as it has a tendency to be the most
manageable in terms of size. One can check that in degree n this is given by k⊗k Ā⊗n⊗k k where Ā is
the augmentation ideal of A. Comparing definitions, we see that this can be identified with the cofree
dg-coalgebra on the augmentation ideal of A in degree 1, which is the definition of the bar construc-
tion given in [18]. The appearance of a coalgebra structure in the bar construction isn’t suprising in
cases where the free comonoid is well understood, as the fattening up done by the bar construction
is philosophically similar to the “sum of possible decomposition of an element in the tensor algebra”
which the cofree coalgebra captures.
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With the goal of constructing a duality out of the bar construction, it is frustrating that we start
with a k-algebra and end up with a dg-algebra. The above line of reasoning can be done for an
algebra in any abelian category due to the generality of the Dold-Kan theorem, and so a naive fix to
this problem would be to replace k−Vect with Ch(k−Vect), but then our construction would send a
dg-algbera to an algebra in Ch(Ch(k−Vect)). At this point one might expect the natural fix to be to
work with infinite complexes, i.e. complexes of complexes of complexes of ... of vector spaces. But in
fact we can stop at Ch(Ch(k − Vect)), because we have a natural way to associate a complex to the
double complex, given by taking the total complex.
We see that this construction takes a dg-algebra (A∗, d) to a complex (BA, d) which in degree n is
generated by elements a1 ⊗ ... ⊗ aq, ai ∈ Ā such that ∑n

i=1 |ai| = n where |ai| is the degree of ai as
an element of A∗. The differential is the sum of the differential coming from Dold Kan and the dif-
ferential coming from A∗. For details on these differentials, we let the reader consult section 2.2 of [18].

The next key example for bar constructions is for dg-operads, which appear as a key technical
component in the identification of the operad structure on the derivatives of the identity in [6]. As
stated before detailing the bar construction for dg-algebras, we won’t detail the operadic bar con-
struction. We will use the definition of the bar construction for operads which appears in [18] in the
next subsection, as this will be needed to discuss Koszul duality. However, we weren’t able to prove
the equivalence with the bar constructions we discussed in this subsection in a satisfactorily simple
or conceptual manner. Therefore we opted not to include it in our general discussion, relying on the
reader’s willingness to verify for themselves that it fits within the framework of this subsection. We
encourage the interested reader to consult [8], which treats everything that is needed in [6].
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3.3 Koszul duality

Focusing our attention back down to an ordinary (i.e. not a dg-algebra) graded k-algebra A, we can
apply the work we followed through in subsubsection §3.2.1 to the dg-algebra obtained by viewing A
as a dg-algebra concentrated in degree 0. Doing this we obtain a dg-algebra (BA, d), and because of
the absence of an internal differential, d will be quite simple. In fact d is given by

d(a1 ⊗ ...⊗ an) =
n∑
i=1

a1 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an.

We have several competing notions of grading, notably the homological grading coming from the
simplicial bar construction where a1 ⊗ ...⊗ an has degree n and the weight grading coming from the
grading on A where a1⊗ ...⊗ an has degree |a1|+ ...+ |an| where |ai| is the degree of ai as an element
of A. We see that our differential doesn’t change the weight grading, so one might be tempted to
study it with respect to the homological grading. However, with this grading an element in A viewed
in BA is of degree 1, but if BA has any chance of being a duality functor, we would rather have its
homological data concentrated in degree 0.
Luckily, there is another grading, which incorporates both of the above gradings, called the syzygy
grading, where a1 ⊗ ... ⊗ an has grading |a1| + ... + |an| − n. With respect to this grading our
differential clearly increases degree by 1. We denote the part of BA which lives in syzygy degree
n by BnA. Because we started with an algebra concentrated degree 0, one might hope that all the
homological inforamation of this chain complex is contained in degree 0. This is made precise by the
following definition.

Definition 3.3.1. (Section 3.4.7 in [18]) We call a graded algebra A Koszul if the cochain complex
(B•A, d) has cohomology concentrated in degree 0. In this case we use the notation A¡ = H0(B•A, d)
and call this the Koszul dual coalgebra. The Koszul dual algebra of A is the k-linear dual of A¡ and
is denoted by A!.

It turns out that this abstract characterization implies that the algebra A is quadratic (see exercise
3.8.1. in [18]), i.e. of the form T (V )/R where R ⊂ V ⊗ V . Thanks to this, we may write a Koszul
algebra as A(V,R) as a short hand for T (V )/R, and with this notation the Koszul dual algebra and
coalgebra admit a more explicit description

A(V,R)¡ = C(sV, s2R), A(V,R)! = A(V ∗, R⊥).

The notation C(sV, s2R) denotes a natural quadratic coalgebra associated to a vector space V and
“degree 2 relations” R. Details are available in section 3 of [18], in particular we encourage the inter-
ested reader to consult section 3.1 to 3.3. In particular, anyone following their curiosity up to section
3.2.3. will feel justified in calling this notion a duality.

At this point we have two heuristic perspectives for Koszul duality, the first being the one an-
nounced in the previous section as what happens when one tries really hard to make the bar construc-
tion a duality functor and the other as taking an algebraic object with generators and relations and
replacing the relations by orthogonal ones. We now move on to discussing Koszul duality for operads.

The Koszul duality of operads draws heavy inspiration from the Koszul duality of algebras. In
particular, we work directly with quadratic operads, instead of defining a a priori more general theory,
before realizing that the conditions we require impose being quadratic.

Definition 3.3.2. (Section 7.1 in [18]) We call a pair (E,R) an operadic quadratic data when E is
a symmetric sequence of k-modules with R a sub-symmetric sequence of the free operad T (E) on E
which lives entirely in degree 2. This can be used to define an operad P (E,R) = T (E)/R.
We call an operad P quadratic if it is isomorphic to an operad of the form P (E,R).

Just as in the algebra case there is an analgous construction of quadratic cooperads, which with E
and R just as in the above definition, we denote by C(E,R). In perfect analogy with the algebra case,
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for a quadratic operad P ∼= P (E,R) we call P ¡ := C(sE, s2R) its Koszul dual cooperad. Defining the
Koszul dual operad of an operad takes a bit more work. For P ∼= P (E,R), it is given in symbols by

P ! = (EndsK⊗HP ¡)∗.

To make sense of the above notation we refer the reader to section 5.3.2. and 7.2.2. of [18]. The fact
that this in fact deserves to be called a duality functor is given by the following statement.

Theorem 3.3.3. (7.2.5. in [18]) For any quadratic operad P = P (E,R) such that each En is finite
dimensional we have

(P !)! ∼= P.

In analogy with the algebra case, we would like a criterion to tell whether an operad is Koszul,
in particular relating it to the appropriate bar construction. A priori, there are several different
definitions of the bar construction for an operad, the unification of which can be unclear. The bar
construction we consider is given by mapping an augmented operad P to the cofree algebra on the
suspension of the augmentation ideal of P . The operad BP can be equipped with a syzygy grading
in much the same way as the algebra case, and the natural differential raises this degree by 1. And so
similarly to the algebra case, we have the following result.

Proposition 3.3.4. (Proposition 7.3.2. in [18]) Let (E,R) be an operadic quadratic data, and P the
associated quadratic operad. There is a natural inclusion of cooperads i : P ¡ → BP , which induces an
isomorphism of operads

P ¡ → H0(BP, d).

This idea is then pursued in section 5.2 of [8], which gives the following definition of the Koszul
dual of an augmented (not necesairly quadratic) dg-operad.

Definition 3.3.5. (5.2.3. in [8]) Consider a reduced dg-operad P∗, where the subscript is meant to
indicate the dg-degree. In the bar construction B•P∗ , the symbol • is a placeholder for the tree
degree. Then the Koszul dual of P∗ is given as

K(P )s = Hs(B∗(P )s, d),

where d is the differential coming from the bar construction.

If we place the additional restrictions on P that it has trivial differential and is concentrated in
dg-degree 0, the above definition is equivalent to the one which is used in Ching’s paper. Section 5.2.5
of [8] gives the connection between the more general theory of Koszul duality and the one in [18] we
just briefly discussed. In particular, for quadratic operads, we may use the explicit description of P !.
Furthermore, lemma 5.2.10. of [8] shows that there is a posteriori no loss of generality by restricting
to the case of quadratic operads. This same lemma would be another way to say that in the case of
Koszul operads, the term duality is justified.
However for a truly complete understanding, one needs the bar construction/homological perspective
on Koszul duality, as it is only with this perspective that the following result from Ching’s paper can
be proven.

Theorem 3.3.6. (Proposition 9.48 in [6]) Let P be a reduced operad in spaces or spectra, such that
each object P (A) is cofibrant and all of the homology groups with coefficients in k H∗(P (A)) and
H∗(B(P )(A)) are flat k-modules. Then if we further have that H∗(P ) is Koszul, then

H∗(B(P )) ∼= K(H∗(P )).

There is much more, which we unfortunately will not have time to discuss. In particular, as we
have already somewhat alluded to, it isn’t immediately obvious how the bar construction of Loday
and Valette [18] based on the cofree cooperad relates to the tree based bar construction of Ching and
Freese ([6] and [8]). One substantial difference is that [18] works with a cohomological grading (the
syzygy grading) and [6] and [8] work with a homological “tree grading”. The connection between these
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can only be discussed once we understand the relationship between the two bar constructions. In order
to achieve this, the most natural path is to connect the bar construction of [18] with the monoidal
bar construction, as in theorem 4.1.8 of his paper [8], where Freese shows the connection between
his bar construction and the simplicial bar construction. Another approach, which could allow for
more abstract arguments, would be by using universal properties. Although these already appeared in
[18] via twisting morphisms, they aren’t emphasized. With more modern perspectives, this becomes
central, for example in section 5.2 of [21].
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3.4 Derivatives of the identity

In this subsection we aim to have at least a vague understanding of the computation of the derivatives
of the identity Id : S → S as done by Johnson in [16]. The model of the derivatives of the identity used
in Ching’s paper to understand the operad structure is a slightly upgraded version which is described
by Arone and Mahowald in [1]. This description is used by Ching to obtain his corollary 8.8, which
gives the following concise description of the derivatives of the identity

∂∗ Id = Ω(DS0).

Where Ω is the cobar construction on the cooperad DS0, which is the Spanier-Whitehead dual of the
operad of based spaces which is constant equal to S0 in each arity. This result, coupled with the
dual of theorem 3.3.6 and a simple computation is what justifies the claim that the derivatives of the
identity are an analogue in the category of spectra to the Lie operad.
The reason we will discuss the computation in [16] instead of the one in [1] is because a thorough
understanding of either of these papers is not achievable within the span of this project, and so instead
we rely on notes by Ben Knudsen [3] which give an overview of the construction in [16].

The first step in computing the derivatives of the identity is the following result. The point of
this result is that crn(Dn(F )) is the key ingredient in the definition of ∂nF , but is rather unwieldy,
whereas there is a chance at direct inspection for P1,...,1 crn(F ).

Proposition 3.4.1. (Remark 6.1.3.23. in [21]) Let C be an ∞-category which admits colimits and a
final object, let D be a pointed differentiable category and let F : C → D be a reduced functor. Then
we have

P1,...,1 crn(F ) ≃ crn(Pn(F )),

which implies
crn(Dn(F )) ≃ P1,...,1(crn(F )).

Proof. This proof is essentially an exercise in recollection of results from the first chapter of this
project. Recall that Pn is left exact by lemma 1.2.7, that the nth cross effect of F is given by
Red(F ◦ q) where q : Cn → C is the coproduct functor and Red is defined via a limit in definition
2.1.7. It is clear that Pn commutes with precomposition by q by lemma 1.2.9, so that we may deduce
crn(PnF ) = Red(Pn(F ) ◦ q) ≃ Red(Pn(F ◦ q)) ≃ Pn(Red(F ◦ q)) = Pn(crn F ) which implies the first
part of the desired result by the lemma below.
Now, one can observe that crn is left exact. To see this, first notice that this can be verified object
wise. Inspecting the definition, the cross effect of F at an n-tuple is given by a limit over a diagram
whose objects are all F evaluated at some coproduct of elements of the n-tuple. So the result follows
because limits commute with limits and with evaluation at an object. This implies that crn(DnF ) =
crn(fib(PnF → Pn−1F )) ≃ fib(crn(PnF ) → crn(Pn−1F )). Which by the above paragraph proves the
desired result assuming that crn(Pn−1F ) = ∗, i.e. the nth crosseffect of an n − 1 excisive functor
is constant equal to the terminal object of D. This follows from a direct application of proposition
2.1.13, which shows that crn(Pn−1F ) is 0-excisive, i.e. constant, which indeed gives the desired result
because F is reduced

Now in order to understand P1,...,1(crn(F )), we wish to reduce the somewhat easier single variable
Goodwillie calculus. We do this with the corrolary which follows the following result.

Lemma 3.4.2. (6.1.3.13. in [21]) Let C1, ..., Cm be ∞-categories with finite colimits and final objects,
let D be an ∞-category with finite limits and let F : C1 × ... × Cm → D be a functor reduced in each
variable. Let C = C1 × ...× Cm and let F ′ be the functor F seen as a single variable functor. If F ′ is
m-excisive, then F is (1, ..., 1)-excisive
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Proof. Without loss of generality we can show that F is 1-excisive in its first variable with all other
variables constant. That is we want to show that given Xi ∈ Ci,∀i ∈ {2, ..., n} and a pushout square

Y Z

Y ′ Z ′

,

then the following square is a pullback

F (Y,X2, ..., Xn) F (Z,X2, ..., Xn)

F (Y ′, X2, ..., Xn) F (Z ′, X2, ..., Xn)

.

To use the m-excisiveness of F , we want to build an m-cube out of the square

Y Z

Y ′ Z ′

.

In order to achieve this, for i ∈ {2, ...,m} choose maps Xi → ∗i where ∗i ∈ Ci is a final object, which
we view as maps τi : ∆1 → Ci and view the above pushout as a map σ : ∆1 × ∆1 → C1. Taking
the product σ × τ2 × ... × τn we obtain a strongly coCartesian m-cube U : N(P([m])) → C (the fact
that this is indeed strongly coCartesian follows from lemma 1.1.4). Now by assumption, F ′(U) is a
Cartesian cube in D. Because F is reduced in each variable, we have that F (U)(T ) is a final object of
D unless T ⊂ {0, 1}. So the Cartesian square F (U) is a right Kan extension (see definition A.0.4) of
its restriction to N(P([1])). This in particular implies that F (U)|N(P([1])) is a pullback, which is what
we wanted to show.

Lemma 3.4.3. (Corollary 6.1.3.14. in [21]) Let {Ci}mi=1 be ∞-categories which admit finite colimits
and a final object, let D be a differentiable category and let F : ∏m

i=1 Ci → D be a functor which is
reduced in each variable. Let C = ∏m

i=1 Ci and let F ′ : C → D be the functor F viewed as a single
variable functor. Then there is a cannonical equivalence PmF ′ ∼= P1,...,1F .
Proof. We know that the (1, ..., 1)-excivieness of F implies that F ′ is m-excisive by proposition 2.1.4.
By universal property of Pm(F ′) this means that the natural map F ′ = F → P(1,..,1)F factors through
PmF

′, so that i in particular we get a map α : PmF ′ → P(1,...,1)F .
If we could show that PmF ′ is reduced in each variable, we could deduce by the above result that
PmF

′ is (1, .., 1)-excisive, which would imply that the natural map F = F ′ → PmF
′ factors through

P(1,...,1)F , in particular yielding a map β : P(1,...,1)F → PmF
′. The usual argument for maps obtained

from universal properties in this way imply that in this case α and β are mutually inverse.
Thus it suffices to show that PmF ′ is reduced in each variable. Let Ei ⊂ C be the full subcategory
spanned by those m-tuples whose ith coordinate is a final object. The inclusion Ei → C preserves
pushouts, so that by lemma 1.2.9 we get Pm(F ′)|Ei

∼= Pm(F ′|Ei). Now because F ′ is reduced in each
variable we have that F ′|Ei is constant equal to a final object of D, which implies that the same holds
for Pm(F ′|Ei). Thus PmF ′ maps any m-tuple with ith coordinate a final object to a final object, so
that PmF ′ is reduced in its ith variable. Because i was arbitrary this concludes the proof.

And so by inspecting the definition of the derivative, we immediately derive the following key
result
Corollary 3.4.4. (Proposition 8 in [3]) Let F : S∗ → S∗ be a reduced functor from based spaces to
based spaces. Then there are natural Σn-equivariant equivalences

Ω∞∂nF (S, ...,S) ≃ lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn crn(F )(Sk1 , ..., Skn).

The action of Σn on the left side is induced from the permutation of argument action on ∂nF :
Sp(C)n → Sp(D) and the action on the right comes from the natural action Σn ↷ Nn.
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Recalling that ∂nF is fully determined by where it sends (S, ...,S), this greatly simplifies our study
of the derivatives of the identity. In particular it suffices to understand

P1,...,1 crn(IdS∗)(S0, ..., S0) ∼= lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn crn(IdS∗)(Sk1 , ..., Skn).

We start by studying crn(IdS∗), which recalling (and slightly unwinding) the definition we see that,
evaluated at (X0, ..., Xn), it yields the fiber of the natural map

X(∅)→ lim←−
∅≠S⊂[n]

X(S),

where X : P([n]) → S∗ maps a subset S to ∨
i/∈S Xi. In general, for an n-cube X, we call the above

fiber the total fiber of X and denote it by tfib(X). We want to understand the total fiber better, in
particular and explicit model, and in order to do that we introduce some notation.
Definition 3.4.5. (Notation 9 in [3]) Let I be a finite set, for S ⊂ I we write

[0, 1]S = {t ∈ [0, 1]I | i /∈ S ⇒ ti = 0}

and
∂1[0, 1]S = {t ∈ [0, 1]S | ∃i ∈ S such that ti = 1}.

It is clear that both of these construction give us I-cubes [0, 1]• : P(I)→ S∗ and ∂1[0, 1]• : P(I)→ S∗.
This allows us to state the following result.

Proposition 3.4.6. (Lemma 10 in [3] and 5.5.8 in [23]) Let X : P(I) → S∗ be an I-cube, then we
have the following (strict) pullback

tfib(X) Nat([0, 1]•, X)

∗ Nat(∂1[0, 1]•, X)

.

The right vertical map is the restriction map, and the bottom map is the inclusion as the natural
transformation constant equal to the base point.
Further this pullback is also a homotopy pullback.

Proof. Denote by n the cardinality of I, and identify I with {1, ..., n}. Notice that the case n = 1,
this is just an explicit model for the fiber of the map X(∅) → X({1}) (see for example definition
2.2.1. of [23]). This opens the way for a proof by induction, so hence forth assume the result holds
for (n − 1) cubes and let X be an n-cube of topological spaces. We can view X as a morphism of
(n−1) cubes, from the face corresponding to subsets not containing n to the face corresponding to the
subsets containing n. We write this morphism as χ : Xa → Xb to fix some notation. It now follows
from comparison of universal property that

tfib(X) ≃ fib(tfib(Xa))
χ−→ tfib(Xb)).

To clear up what we mean by this, we specify that the base point of the total fiber of an (n− 1)-cube
is given by the natural transformation which maps [0, 1]S constantly to the base point of Y (S). Now
using the induction hypothesis and the fact that we have an explicit model for the homotopy fiber we
get that the total fiber of X can be described as the subspace of

tfib(Xa)×Map∗([0, 1], tfib(Xb)),

consisting of those pairs ({fS}S⊂{1,...,n−1}, {gt,S∪{n}}S⊂{1,...,n−1}) such that g0,S∪{n} = χS ◦ fS . Equiv-
alently, this is for each S ⊂ {1, ..., n} a map hS : [0, 1]S → X(S), where depending on whetehr n ∈ S
or not we have hS = gt,S\{n} or hS = fS . Furthermore, for any inclusion of subset T ⊂ S, we have that
hS |[0,1]T = X(T ⊂ S)◦hT . To see this, there are 3 cases: the first case is n ∈ T ⊂ S, so that the desired
relation holds because it holds for the gS ; in the second case, n /∈ S, so that the desired relation holds
because it holds for fS ; and the third case is when n ∈ S\T , by the previous two cases we only need to
deal with the case S = T ∪ {n} in which case the desired relation follows from g0,S∪{n} = χS ◦ fS .
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Explicitly, this means the total fiber of X can be identified with the collection of maps {fS :
[0, 1]S → X(S)}S⊂I such that the following diagram commutes

[0, 1]S X(S)

[0, 1]T X(T )

fS

fT

and such fS(t) is the base point ofX(S) whenever one of the ti equals 1. What this description allows us
to do is to construct the map, which will in due time allow us to compute the derivatives of the identity.
Indeed for a fixed index i ∈ I we consider the map which sends an I-tuple {fS : [0, 1]S → X(S)}S⊂I
to fI\{i} : [0, 1]|I|−1 → X(I\{i}). Of course, we can take the product over all i ∈ I, which yields
a map tfib(X) → Map∗([0, 1]|I|(|I|−1),

∏
i∈I X(I\{i})). Recalling that we are working in the pointed

category, post composing by the quotient ∏
i∈I X(I\{i}) → ∧

X(I\{i}) we get the comparison map
tfib(X)→ Map([0, 1]|I|(|I|−1),

∧
i∈I X(I\{i})).

Of course we want to apply this construction to the n-cube defining the cross effect, which yields a
map

γ : crn(IdS∗)(X1, ..., Xn)→ Map∗([0, 1]n(n−1),∧ni=1Xi).

It is clear by construction that the γ assemble into a natural transformation
crn(IdS∗)(−) → Map∗([0, 1]n(n−1),∧ni=1(−)) of functors Sn∗ → S∗. Recall that our goal is to find a
more direct description of the derivatives of the identity, in order to increase the chances that γ will
give us an equivalence describing the derivatives of the identity, we would like to refine this map.
What we mean by this, is that we would like to corestrict this map, which can be done if there is a
subspace W ⊂ [0, 1]n(n−1) such that every continuous map [0, 1]n(n−1) →

∧n
i=1Xi in the image of γ

maps W to the base point of ∧n
i=1Xi. Indeed, if this is the case we will be able to correstrict γ to

Map∗([0, 1]n(n−1)/W,
∧n
i=1Xi).

To do this, for the sake of convenience, we will view [0, 1]n(n−1) as the space of n × n matrices with
coefficients in [0, 1] with 0 on the diagonal, so that for an element t ∈ [0, 1]n(n−1) the notation tij
makes sense. In this notation, the ith row of the matrix corresponds to the copy of [0, 1]n−1 coming
from {1, ..., n}\{i}.
The second matter of convenience is the following definition, a pedagogical tool at the service of the
next proposition.

Definition 3.4.7. We call t ∈ [0, 1]n(n−1) “irrelevant” if every continuous map [0, 1]n(n−1) →
∧n
i=1Xi

in the image of γ : crn(IdS∗)(X1, ..., Xn) → Map∗([0, 1]n(n−1),∧ni=1Xi) maps t to the base point of∧n
i=1Xi.

We have the following (not necessarily exhaustive) description of irrelevant points

Proposition 3.4.8. (Lemma 12 in [3]) The t ∈ [0, 1]n(n−1) such that tij = 1 for some i, j ∈ {1, ..., n}
are irrelevant. Further the t ∈ [0, 1]n(n−1) such that tik = tjk for all k ∈ {1, ..., n} and some fixed and
distinct i, j ∈ {1, ..., n} are irrelevant.

Proof. The first part of the claim is immediate from proposition 3.4.6. So we need only prove the
second claim.
For the second part, denote the subspace of t ∈ [0, 1]n(n−1) such that tik = tjk for all k ∈ {1, ..., n} by
Wij . We take an element {fS}S⊂{1,...,n} ∈ crn(IdS∗)(X1, ..., Xn). We need to show that for t ∈Wij each
fI\{i}(t) is equal to the base point of Xi. For any S ⊂ {1, ..., n} there is a map [0, 1]n(n−1) → [0, 1]n(n−1)

S

given by discarding all the rows whose index isn’t in S, we denote these maps by π, leaving the
dependance on S clear from context. We have the following clear, though somewhat index heavy
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commutative diagram

[0, 1]n(n−1)

Wij

[0, 1]n(n−1)
{i} [0, 1]n(n−1)

{i,j} ∩Wij [0, 1]n(n−1)
{j}

Xi Xi ∨Xj Xj

π π

π|Wij

f{1,...,n}\{i} f{1,...,n}\{i,j} f{1,...,n}\{j}

.

The commutativity of the triangles is a consequence of the construction of π and the commutativity
of the rectangles follows from the assumption that the vertical maps come from crn(IdS∗)(X1, ..., Xn)
which we view as a subspace of Nat([0, 1]•,∨i/∈•Xi). Now for a given t ∈ Wij , it is mapped by
f{1,...,n}\{i,j} either to Xi or to Xj (or potentially both if t is mapped to the based point). Without
loss of generality, let us assume t is mapped to Xi, then by commutativity of the diagram, we see that
f{1,...,n}\{j}(t) must be the base point of Xj . This is enough for {fS}S⊂{1,...,n} ∈ crn(IdS∗)(X1, ..., Xn)
to map t ∈Wij to the base point of the smash product. This shows the desired claim.

We denote the quotient of [0, 1]n(n−1) by the subspace of the irrelevant t described in the above
proposition by ∆n and the natural transformation crn(IdS∗)→ Map∗(∆n,

∧n
i=1(−)) by ϕ. Notice that

this natural transformation is Σn-equivariant, where the action on the domain an codomain are by
permutation of variables. The claim we are going to work towards is that the map induced by ϕ on
the following colimits

lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn crn(IdS∗)(Sk1 , ..., Skn) ϕ−→ lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn Map∗(∆n,
n∧
i=1

Ski)

is an equivalence. For a functor F : Sn∗ → S∗ we call the colimit

lim−→
k1,...,kn∈N(Nn)

Ωk1+...+knF (Sk1 , ..., Skn)

its multilinearization. With this vocabulary in hand, our goal has now become to show that the
induced map by ϕ on multilinearizations is a weak equivalence.

Lemma 3.4.9. (Lemma 15 in [3]) Let F,G : Sn∗ → S∗ be two functors and ψ : F → G be a natural
transformation between them. If ψ(X1,...,Xn) is ((n+1)k−c)-connected whenever each Xi is k-connected,
then ψ induces a weak equivalence after multilinearization.

Proof. For the sake of compactness, we introduce the notation Fl = ΩnlF (ΣlX1, ...,ΣlXn), Gl =
ΩnlG(ΣlX1, ...,ΣlXn) and ψl : Fl → Gl the map Ωnlψ(ΣlX1,...,ΣlXn). The map we are interested in
is the induced map on colimits ψ∞ : F∞ → G∞, we want to show this map is an equivalence. The
connectivity assumptions yield that ψl is at least ((n+ 1)l− c−nl)-connected, which tends to infinity
when l does. So that in particular, the induced map on πm is an isomorphism for large enough l. Now
compactness of spheres implies that πm commutes with filtered colimits, and so because πm(ψl) is
eventually an isomorphism we have that πm(ψ∞) is an isomorphism for all m. This prove the desired
claim that ψ∞ is a weak equivalence.

The above result has the following corollary which is the result we will actually use to show that
ϕ is a weak equivalence after multilinearization.

Corollary 3.4.10. (Corollary 16 in [3]) Let F,G : Sn∗ → S∗ be two functors and ψ : F → G be a
natural transformation between them. If Ωψ(ΣX1,...,ΣXn) is ((n+ 1)k − c)-connected whenever each Xi

is k-connected, then ψ induces a weak equivalence after multilinearization.
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Proof. By the previous result, the assumptions imply that the whiskering Ω∗ψ ∗ (Σ, ...,Σ)) induces an
equivalence after multilinearization. So the claim follows from the fact that ψ and Ω ∗ ψ ∗ (Σ, ...,Σ))
clearly have the same multilinearization.

The reason we will use the above result is that studying the connectivity of ϕ directly turns out to
be quite tricky, whereas the new map we obtain by post composing by Ω and precomposing coordinate
wise by Σ is much more approachable. The reason for this (or at least part of the reason) is that the
homotopy groups (which we need to understand at least enough to prove the connectivity assumptions)
of a wedge can be quite hard to understand, whereas by the following computation

Ω crn(IdS∗)(ΣX1, ...,ΣXn) ≃ Ω tfib(S 7→
∨

i/∈S⊂{1,...,n}
ΣXi)

≃ Ω tfib(S 7→ Σ
∨

i/∈S⊂{1,...,n}
Xi)

≃ tfib(S 7→ ΩΣ
∨

i/∈S⊂{1,...,n}
Xi)

≃ crn(ΩΣ)(X1, ..., Xn)

the homotopy groups we need to compute when we post/precompose appropriately can be attacked
with the Hilton-Milnor theorem. For the sake of completeness, we recall it here.

Theorem 3.4.11. (Theorem 17 in [3])(Theorem 5.9 in [17]) Let {Xi}ni=1 be a collection of connected
pointed spaces. There is a canonical natural weak equivalence

′∏
w∈Ln

ΩΣ(w(X1, ..., Xn)) ∼−→ ΩΣ(X1 ∨ ... ∨Xn),

where Ln denotes the set of of “basic products in the free Lie algebra on n-generators ⟨x1, ..., xn⟩, the
notation

∏′ denotes the “weak infinite product” and w(X1, ..., Xn) is obtained from w by replacing
each instance of xi by Xi and the Lie bracket by the smash product.

We won’t detail the above theorem anymore than this as we won’t need a perfect comprehension
of its inner workings to apply it. The only details we will use is a count of a certain subset of basic
words, which we will state when we need it in the proof of the following computation.

Lemma 3.4.12. (Corollary 18 in [3]) Let {Xi}ni=1 be a collection of k-connected pointed spaces, then

πm(crn(ΩΣ)(X1, ..., Xn)) ∼= πm(
n∧
i=1

Xi)(n−1)!

for 0 ≤ m ≤ (n+ 1)(k + 1)− 1.

Proof. We want to understand πm of tfib(S 7→ ΩΣ(∨i/∈S⊂{1,...,n}Xi)), and so naturally, we apply the
Hilton-Milnor theorem to instead study

tfib(S 7→
′∏

L|{1,...,n}\S

ΩΣ(w(X1, ..., Xn))).

Direct inspection via the definition of the total fiber of X as fib(X(∅) → lim−→∅≠S⊂I X(S)) gives an
equivalence

tfib(S 7→
′∏

L|{1,...,n}\S

ΩΣ(w(X1, ..., Xn))) ∼=
∏
w∈L◦

n

ΩΣ(w(X1, ..., Xn)),

Where Ln◦ consists of those basic product involving each xi at least once. Because πm commutes
with finite products and filtered colimits, it commutes with the weak infinite product, so that we may
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reduce our study to πm(ΩΣ(w(X1, ..., Xn))) for w ∈ Ln◦ . Observe that for the w ∈ Ln◦ containing a
certain xi more than once, because smash product sums connectivity, we have that ΩΣw(X1, ..., Xn)
is at least ((n+ 1)k − 1)-connected. In particular these don’t contribute anything to πm in the range
we are interested in. This yields an isomorphism

πm(crn(ΩΣ)(X1, ..., Xn)) ∼=
′∏
L⋆

n

πm(ΩΣ(w(X1, ..., Xn))),

where L⋆n consists of the basic words where each xi appears exactly once. This implies that w(X1, ..., Xn) ∼=∧n
i=1Xi for all the w we are considering. So the desired result follows from the fact that there are

(n− 1)! basic products containing each xi exactly once.

To show that Ωϕ(ΣX1,...,ΣXn) is connected enough, it would be great if we could show that
πm(Ω Map∗(∆m,

∧n
i=1 ΣXi)) = πm(∧n

i=1Xi)(n−1)!, in the range 0 ≤ m ≤ (n + 1)(k + 1) − 1. In-
deed, in that case, the homotopy groups of the domain and codomain of Ωϕ(ΣX1,...,ΣXn) would be
abstractly isomorphic, therefore, up to showing that the isomorphism is realized by Ωϕ(ΣX1,...,ΣXn), we
would have that this map is ((n+ 1)(k+ 1)− 1) connected, which is enough to apply corollary 3.4.10.
There is a very similar space that has the desired homotopy groups, indeed we have

πm(
n∧
i=1

Xi)(n−1)! ∼= πm+n(
n∧
i=1

ΣXi)(n−1)! ∼= πm+1(Map∗(Sn−1,
n∧
i=1

ΣXi))(n−1)!

∼= πm+1(Map∗(
∨

(n−1)!
Sn−1,

n∧
i=1

Xi)) ∼= πm(Ω Map∗(
∨

(n−1)!
Sn−1,

n∧
i=1

Xi)).

The first isomorphism follows from the Freudenthal suspension theorem, as each Xi is k-connected, so
their smash product is nk-connected, and so when 0 ≤ m ≤ (n+ 1)(k+ 1)− 1, we have m ≤ 2nk (for
k at least 1), which is the range where Freudenthal’s suspension theorem. The second and second to
last isomorphism follow from the adjunction Σ ⊣ Ω. Lastly, the third isomorphism follows from the
fact that Map∗(−, X) converts coproducts to products and from the fact that πm preserves products.

So we have the desired abstract isomorphism of homotopy groups if we can show that ∆n ≃∨
(n−1)! S

n−1. And it turns out this particular prayer does not go unanswered. In order to obtain the
desired weak equivalence, we will need the following result, called the nerve theorem, which we state
without proof.

Theorem 3.4.13. (Theorem 21 in [3]) Let X be a CW-complex and assumed it is covered by subcom-
plexes Ki such that every nonempty finite intersection of these subcomplexes is contractible. Then X
is equivalent to the nerve of the poset of finite intersection of elements of {Ki}.

Proposition 3.4.14. (Proposition 19 and lemma 20 in [3]) There is a canonical weak equivalence∨
(n−1)!

Sn−1 → ∆n

Proof. This proof is divided into two key steps. We introduce the space ∆̃n which is the subspace of
∆n consisting of those t ∈ ∆n such that tij = 0 whenever j > 1. We will show on the one hand that
∆̃n is homotopy equivalent to ∆n and on the other that ∆̃n is homeomorphic to a wedge of n-spheres.
We start with the latter objective. Explicitly the space ∆̃n is the quotient of In−1, the first row of
In(n−1), by the subspace A ∩ ∆̃n, where A is the space by which we quotient In(n−1) to get ∆n.
Under this identification, the subspace by which we quotient to get to ∆n restrict to the corresponding
subspaces of In−1 by which we quotient to get ∆̃n. Referring back to proposition 3.4.8, the subspace
by which we quotient In−1 consists of those t such that t1i = 1 for some i, those such that t1i = t11 = 0
for some i and finally those t such that t1i = t1j for distinct i, j. It is then clear that this is exactly
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the configuration space of n− 1 labeled points in [0, 1], quotiented by those configurations where one
of the points is 0 or 1. One can observe that, before quotienting, this can be described as

⊔
σ∈Σn−1

{(s1, ..., sn−1) ∈ [0, 1]n−1 | 0 ≤ s1 < s2 < ... < sn−1 ≤ 1}.

Of course, the above space is identified with ⊔
(n−1)! ∆n−1, and the subspace by which we quotient is⊔

(n−1)! ∂∆n−1. So we get a homeomorphism ∆̃n
∼=

∨
(n−1)! S

n−1.
We now move on to showing we have a weak equivalence ∆̃n ≃ ∆n. For this, we introduce some
notation for the spaces appearing in proposition 3.4.8. Denote by Z the subspace of In(n−1) consisting
of those t such that tij = 1 for some coordinate. And denote by W the space of t such that for some
fixed and distinct i, j and for all k we have tik = tjk. We also denote the corresponding subspaces of
∆̃n by Z̃ = Z ∩ In−1 and similarly W̃ = W ∩ In−1. So by construction the space of interest to us fits
in the following homotopy pushouts

Z̃ ∪ W̃ In−1 Z ∪W In(n−1)

∗ ∆̃n ∗ ∆n

.

Thanks to homotopy invariance of homotopy pushouts, it suffices to show Z̃ ∪ W̃ ≃ Z ∪W . In turn
these spaces fit in the following homotopy pushouts

Z̃ ∩ W̃ W̃ Z ∩W W

Z̃ Z̃ ∪ W̃ Z Z ∪W

.

It isn’t hard to see that Z,W, Z̃ and W are contractible, so that, for the same reasons as above, it
suffices to show Z̃ ∩W ≃ Z ∩W . To do this, we will use the nerve theorem to show that both are
homotopy equivalent to N(Pn) the nerve of the poset of non-trivial partitions of a set of n-elements.
This will show that ∆n ≃ N(Pn) ≃ ∆̃n.
For this, we denote by Wij the subspace of W consisting of t such that tik = tjk. Clearly W =⋃

1≤i<j≤nWij . We also introduce the notation W̃ij = Wij∩∆̃n. Of course we have W∩Z = ⋃
i,jWij∩Z

and W̃ ∩ Z̃ = ⋃
i,j W̃ij ∩ Z̃, so in order to apply the Nerve theorem to obtain the desired result we

require precisely that all the non-empty intersections of a finite number of Wij ∩ Z or of W̃ij ∩ Z̃
are contractible and that the associated poset is the poset of non-trivial partitions of a set with n
elements. We will only treat W ∩ Z, as the case of W̃ ∩ Z̃ is perfectly analogous
Recall that a partition is equivalently an equivalence relation, so that to a non-trivial partition λ
we associate the intersection ⋂

i∼λj
Z ∩Wij . It is clear that any intersection is equal to one coming

from an equivalence relation, so that the poset of non-empty intersections is equivalent to the poset
of non-trivial partitions, in particular the geometric realization of their nerves are the same. Each of
these intersection ⋂

i∼λj
Z ∩Wij is contractible by a coordinate wise linear homotopy sending tij to 0

if i ∼λ j and to 1 otherwise. And so the nerve theorem applies to obtain the desired result.

This shows both the domain and codomain Ωϕ(ΣX1,...,ΣXn) have isomorphic mth homotopy group
for 0 ≤ m ≤ (n + 1)(k + 1) − 1, and so all that remains to show is that Ωϕ(ΣX1,...,ΣXn) realizes this
isomorphism. Also notice that the above proof shows that ∆n = Σ2 N(Pn) where Pn is the poset of
nontrivial partitions of {1, ..., n} ordered by refinement. We will not deduce the remaining claim that
γ realizes the above weak equivalence. According to our main source for this subsection, this would
follow from
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Lemma 3.4.15. (Proposition 23 in [3]) For each σ ∈ Σn−1 there is a map Cσ fitting into a commu-
tative diagram

∏n
i=1Xi Ω crn(IdS∗)(ΣX1, ...,ΣXn) Ω Map∗(∆n,

∧n
i=1 ΣXi)

Ω Map∗(Sn−1,∧ni=1ΣXi)

∧n
i=1Xi ΩnΣn(∧n

i=1Xi)

q

Cσ
Ωϕ(ΣX1,...,ΣXn)

λ∗
τ

≃
Γστ ∧(−)

for each τ ∈ Σn−1, where λτ : Sn−1 →
∨

Σn−1 S
n−1 → ∆n is the inclusion of the τ factor.

Moreover, deg(Γστ ) = δστ , where this δ is the Kronecker δ.

Assuming that we knew that ϕ indeed realized the desired isomorphism, we have

Theorem 3.4.16. (Corollary 14 in [3]) There is an equivalence of Σn-spectra

∂n(IdS∗) ≃ Map(Σ∞∆n,S).

Proof. The Σn-equivariant map γ : crn(IdS∗)(−)→ Map∗([0, 1]n(n−1),∧ni=1(−)) satisfy the connectiv-
ity conditions of corollary 3.4.10 by the above statement, where we claimed that ϕ realizes the desired
isomorphism. So by proposition 3.4.4 we have

Ω∞∂n IdS∗ ≃ lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn crn(IdS∗)(Sk1 , ..., Skn) ≃ lim−→
k1,...,kn∈N(Nn)

Ωk1+...+kn Map∗(∆n, S
k1+...+kn)

≃ lim−→
k∈N(N)

Map∗(Σk∆n,ΣkS0) ≃ Ω∞ Sp(Σ∞∆n,S).

This proves the desired result.

This completes the computation of the derivatives of the identity to the level of detail we will
pursue. In reality, the equivalence we found ∆n ≃ Σ2 N(Pn) during the proof of theorem 3.4.13 can
be made into a Σn-equivariant equivalence, so that we may write

∂n(IdS∗) ≃ D(Σ∞Σ2 N(Pn)),

where D(X) is a short hand for Map(X,S). This is the form used by Prof. Ching to obtain an operad
structure on the derivatives of the identity, by identifying the symmetric sequence of nerves of the
partition posets with the bar construction on the constant symmetric sequence with value S0 (see
lemma 8.6 of [6]). This last symmetric sequence is the operad of commutative algebras of spectra, so
that in analogy with the classical case (see for example 6.2 in [8]) the derivatives of the identity can
justifiably be seen as a “spectral lie operad”.
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A Infinity category vocabulary

In this appendix, we happasardly gather some of the ∞-categorical vocabulary required to read this
project. We do not claim to be exhaustive, but we hope that this can make reading this project easier.
As our goal is simply to gather results, we give minimal intution if any, and don’t go into the detail
of the definitions required to understand these statements, for those we refer to [20].

In the following definition, when we write X ⋆ Y , we mean the join of X and Y .

Definition A.0.1. (Definition 1.2.8.4. in [20]) Given a simplicial set K, then left cone of K is defined
to be K◁ = ∆0 ⋆ K. We define the right cone of K similarly by K▷ = K ⋆∆0.

To see that this warrant the name “cone”, one can visualize that (S1)◁ is indeed a cone in the
classical sense.

The next three definition are the ∞-category analog of some common category theory notions.

Definition A.0.2. (Definition 1.1.1.1. in [21]) We call an infinity category pointed if it has a 0 object,
i.e. an object which is both initial and final.

Definition A.0.3. (Definition 4.3.2.2. in [20]) Let C,D be ∞-categories and C0 a subcategory of C.
Then we say that F : C → D is a left Kan extension of F 0 : C0 → D if there is a diagram

C0 D

C

F0

F

such that for every C ∈ C the induced diagram

(C0
/C) D

(C0
/C)▷

F 0
/C

F/C

expresses F (C) as a colimit of FC . This means that F/C can be understood as the initial cocone over
C0
/C . When C /∈ C0, by C0

/C we heuristically mean the ∞-subcategory of C/C such that the domain of
objects is in C0. This can be made formal by the fiber product C0

/C := C/C ×C C0.

We include for convenience the dual definition of right Kan extension.

Definition A.0.4. (Definition 4.3.2.2. in [20]) Let C,D be ∞-categories and C0 a subcategory of C.
Then we say that F : C → D is a right Kan extension of F 0 : C0 → D if there is a diagram

C0 D

C

F0

F

such that for every C ∈ C the induced diagram

(C0
C/) D

(C0
C/)▷

F 0
C/

FC/

expresses F (C) as a limit of FC . This means that FC/ can be understood as the terminal cone over
C0
C/. When C /∈ C0, by C0

C/ we heuristically mean the ∞-subcategory of CC/ such that the domain of
objects is in C0. This can be made formal by the fiber product C0

C/ := CC/ ×C C0.
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We need the following result in definition 1.2.2.

Proposition A.0.5. (Proposition 4.3.2.15. in [20]) Let C,D be two categories and let C0 be a full
subcategory of C. Let K ⊂ Fun(C,D) be the full subcategory of those functors which are left Kan
extensions of their restriction to C0 and let K′ ⊂ Fun(C0,D) be the full subcategory of those functors
F such that for each C ∈ C the induced diagram C0

/C → D has a colimit. Then the restriction functor
K → K′ is a trivial fibration (of simplicial sets).

The classical fact that colimits commute with each other (and dually) unsurprisingly holds in the
∞-category case, this can be deduced from the following proposition (and its dual).

Lemma A.0.6. (Lemma 5.5.2.3. in [20]) Let p : X▷ × Y ▷ → C be a diagram such that for every
vertex x ∈ X0 the induced diagram px : Y ▷ → C is a colimit diagram and similarly that for every
y ∈ Y 0 the induced diagram pY : X▷ → C is a colimit diagram. Then, denoting by ∞ the cone point
of Y ▷, we have that the induced diagram p∞ : X▷ → C is a colimit diagram.

Another very useful tool to compute colimits is replacement by a cofinal subcategory, which in the
infinity category case is dealt with by

Proposition A.0.7. (Proposition 4.1.1.8. in [20]) Let v : K ′ → K be a cofinal map of (small)
simplicial sets, then if p : K▷ → C is a colimit diagram for p|K , we have that p ◦ v : K ′▷ → C is a
colimit diagram of p ◦ v|K′.

Yet another tool to compute limits and colimits is the following result.

Proposition A.0.8. (Proposition 4.4.2.2. in [20]) Let C be an ∞-category and let p : K → C be a
K-shaped diagram. Suppose that K decomposes as K = A∪B and that p|A.p|B and p|A∩B all admit a
colimit, say X,Y and Z respectively. Then, the colimit of p, can be identified with the pushout X∪Z Y .

The following proposition gives us a way to detect whether a functor L : C → C′ ⊂ C into a
subcategory is a localization.

Proposition A.0.9. (Proposition 5.2.7.4. in [20]) Let C be an ∞-category and let L : C → C′ be a
functor into a subcategory of C, suppose further that this functor is essentially surjective. Then the
following are equivalent:

(i) L is a left adjoint to the inclusion C′ → C.

(ii) There exists a natural transformation α : IdC → L such that for each C ∈ C, the morphisms
L(αC), αLC : LC → LLC are equivalences.

The next result is the ∞-category generalization of Quillen’s theorem A, which will serve us to
show that inclusions of certain subdiagrams are final or initial.

Theorem A.0.10. (4.1.3.1. in [21]) Let f : C → D be a map from a simplicial set to an infinity
category. Then f is final if and only if for every object D ∈ Ob(D), the simplicial set C ×D DD/ is
weakly contractible.

Dually, f is initial if and only if for every object D ∈ Ob(D) the simplicial set C ×DD/D is weakly
contractible.

Notice that our terminology is different than that of Lurie, see 0.0.8.

Recall that S denotes a suitable category of spaces. Adding the superscript fin means we are
referring only to spaces with the homotopy type of a finite CW-complex. This can also be described
as the smallest subcategory of spaces containing a point, stable under equivalence and finite colimits.
Adding the subscript ∗ implies we are considering pointed spaces.

In the first chapter of [21], an explicit model for the stabilization of an ∞-category with finite
limits is given as follows.
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Definition A.0.11. (Definition 1.4.2.8. in [21]) Let C be an ∞-category with finite limits. The
category of spectrum objects of C, or Sp(C) for short, is the subcategory of Fun(Sfin∗ , C) consisting of
1-excisive and reduced functors.

For the definition of 1-excisive and reduced we refer the reader to sections §1.1 and §1.3. To see
that this category is indeed stable, we refer the reader to corollary 1.4.2.17. in [21], and to observe
that it is a model for the stabilization we refer the reader to proposition 1.4.2.24. in [21].
One advantage of this model is that there is an evident map Ω∞ : Sp(C) → C given by evaluating at
the 0-sphere S0. The point of this map is highlighted first of all by the fact that because (co)limits
are computed pointwise it preserves all (co)limits, and second of all by the following result.

Proposition A.0.12. (Proposition 1.4.2.21. in [21]) Let C be a category which admits finite limits,
then C is stable if and only if the map Ω∞ : Sp(C)→ C is an equivalence.
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